Archive pour le Tag 'pourquoi ?'

Page 4 sur 36

Pourquoi une conférence sociale avec les politiques

Pourquoi une conférence sociale avec les politiques ?

Il n’est pas sorti grand-chose de la réunion provoquée par le chef de l’État avec les organisations politiques hormis cette perspective très floue de conférence sociale. Une conférence qui porterait sur les bas salaires et la révision à la hausse des minima dans les branches. Si l’objectif est louable et même urgent, par contre on peut s’interroger sur la présence de politiques pour discuter d’une question essentiellement sociale et qui doit être de la responsabilité des partenaires sociaux les syndicats d’un côté et les patrons de l’autre.

Il y a suffisamment de questions politiques générales et de questions sociétales pour occuper le monde politique sans qu’il mette inutilement son et dans les négociations sociales.

Largement discrédité les organisations politiques glissent vers le social pour tenter de rénover une image de marque bien ternie.

De leur côté , les syndicats et d’une façon plus générale les partenaires sociaux ne doivent pas contribuer à installer la confusion entre domaine social et domaine politique. On peut se demander d’ailleurs ce que les syndicats font par exemple dans le cadre du soi-disant conseil national de la Refondation qui évidemment n’a rien à voir avec l’ancien conseil de résistance et qui ne constitue qu’un gadget politique pour contourner les institutions. En voulant s’impliquer sur la question des carrières et des salaires, le gouvernement relance son travail d’équilibriste. Mais l’initiative pose de nombreuses questions.

Pourquoi des canicules de plus en plus fréquentes

Pourquoi des canicules de plus en plus fréquentes

par
Cathy Clerbaux
Directrice de recherche au CNRS (LATMOS/IPSL), professeure invitée Université libre de Bruxelles, Sorbonne Université dans The conversation

Les phénomènes météorologiques locaux sont difficiles à prévoir car ils fluctuent rapidement sous l’influence de processus non linéaires et chaotiques, tandis que l’évolution du climat global sur le plus long terme repose sur des phénomènes physiques bien connus qui sont généralement prévisibles. Les prochains 12-18 mois devraient être assez exceptionnels en termes de températures, suite à un alignement de phénomènes locaux et globaux qui se combinent.

Avec mon équipe dont la spécialité est l’étude par satellites de l’évolution de l’atmosphère, j’analyse chaque jour des millions de données vues du ciel pour surveiller les températures sur terre comme sur la mer, partout autour du globe terrestre, et pour mesurer les concentrations des gaz présents dans l’atmosphère. Ces dernières semaines à partir des cartes satellites, nous avons aussi pu observer les records de chaleur qui ont été battus dans de nombreux pays, comme rapportés par les agences météorologiques et les médias.

Un marqueur important a fait les gros titres : il s’agit de l’augmentation de la température moyenne globale de 1,5 °C par rapport à l’époque préindustrielle. Une valeur repère dans l’accord de Paris sur le climat, qui a été dépassée plusieurs jours cet été. Serait-il possible que cette valeur soit également dépassée quand il s’agira de calculer la moyenne annuelle des températures globales pour l’année 2023 ?

Pour comprendre l’évolution des températures, il faut tenir compte du fait que notre climat est complexe : il dépend des interactions entre les activités humaines, l’atmosphère, la surface terrestre et la végétation, la neige et la glace, et les océans. Le système climatique évolue sous l’influence de sa propre dynamique interne, mais dépend également de facteurs externes, qu’on appelle les « forçages radiatifs », et qui sont exprimés en watts par mètres carrés (W/m2).

Le terme forçage est utilisé pour indiquer que l’équilibre radiatif de la Terre est déstabilisé, et le terme radiatif est lui convoqué car ces facteurs modifient l’équilibre entre le rayonnement solaire entrant et le rayonnement infrarouge sortant de l’atmosphère. Cet équilibre radiatif contrôle la température à différentes altitudes. Un forçage positif implique une augmentation de la température à la surface de la Terre, et à l’inverse un forçage négatif implique une diminution.

Les quatre types de forçages radiatifs dont il faut tenir compte pour expliquer les variations du climat. Fourni par l’auteur
Les forçages externes sont à la fois causés par des phénomènes naturels tels que les éruptions volcaniques et les variations du rayonnement solaire, mais également par des modifications de la composition atmosphérique imputables à l’homme (les gaz à effet de serre et les particules liés aux activités humaines). Comprendre les changements climatiques observés depuis une trentaine d’années implique de pouvoir distinguer les modifications liées aux activités humaines de celles associées aux variations naturelles du climat. Les principaux forçages qui vont intervenir et s’additionner sont :

Le forçage lié aux variations de l’activité solaire, qui entraîne des changements du rayonnement solaire qui atteint la Terre. Lorsque le Soleil est plus actif (maximum solaire), il émet davantage de rayonnement. Ce forçage est faible (de + à -0,3 W/m2) mais dure assez longtemps. Son cycle principal est d’environ 11 ans. Il trouve son origine dans les changements du champ magnétique solaire qui se caractérisent par des variations dans le nombre de taches solaires et d’autres phénomènes solaires.

Le forçage lié aux éruptions volcaniques, qui peut être très intense et est en général négatif de -1 à -5 W/m2, mais de courte durée (un à deux ans). Les éruptions volcaniques peuvent avoir un impact significatif sur le climat en raison de l’injection de grandes quantités de cendres, de gaz et de particules dans l’atmosphère.
Tous les volcans n’ont pas un impact sur le climat global, cela dépend de la taille et de la puissance de l’éruption, de l’altitude/de la latitude auxquelles les gaz et les cendres sont éjectés, ainsi que des conditions météorologiques locales. L’étude des éruptions volcaniques passées nous a appris que l’impact le plus significatif est associé à des éruptions proches de l’équateur qui injectent du SO2 haut dans l’atmosphère, par exemple le Mont Pinatubo (Philippines) en 1991. Ce gaz se transforme en gouttelettes d’acide sulfurique (H2SO4) qui constituent un écran pour la radiation solaire traversant l’atmosphère.

Le forçage lié à l’excès de gaz à effet de serre, en particulier le dioxyde de carbone (CO2), le méthane (CH4), le protoxyde d’azote (N2O) et les chlorofluorocarbures (CFC), qui sont transparents à la lumière solaire mais absorbent une partie du rayonnement thermique émis par la surface terrestre. Au fil du temps, les activités humaines, telles que la combustion de combustibles fossiles, la déforestation et l’agriculture, ont entraîné une augmentation significative des concentrations de gaz à effet de serre dans l’atmosphère. L’accumulation de ces gaz à effet de serre, qui absorbent davantage de rayonnement thermique émis par la Terre et piègent plus de chaleur dans l’atmosphère, entraîne un forçage radiatif positif, estimé à +3 W/m2. Il s’agit donc du forçage le plus important car il n’est pas transitoire comme celui associé aux volcans.

Le forçage négatif lié aux aérosols d’origine anthropique et naturelle. Les aérosols sont de petites particules en suspension dans l’atmosphère qui absorbent, diffusent ou réfléchissent la lumière solaire. Elles proviennent des écosystèmes (embruns marins, sables, poussières, cendres volcaniques, aérosols biogéniques) et d’activités humaines comme la combustion de fiouls fossiles, le brûlage de la biomasse et les feux de forêt, l’élevage des animaux et l’usage d’engrais. Toutes ces particules font écran à l’insolation mais cette fois dans les basses couches de l’atmosphère. Même si les incertitudes sur le total du forçage radiatif lié à la présence d’aérosols restent élevées, les estimations actuelles indiquent un forçage radiatif total négatif de -0,5 W/m2. Sans la pollution par les aérosols, la Terre serait donc encore plus chaude qu’elle ne l’est déjà !

En plus des forçages radiatifs, il faut aussi tenir compte de la variabilité naturelle du système couplé océan-atmosphère, et en particulier du phénomène ENSO (El Niño Southern Oscillation), avec sa composante chaude El Niño et sa composante froide La Niña. Ces phénomènes sont les principaux facteurs de variation d’une année sur l’autre, dont il faut tenir compte quand on analyse la tendance à long terme au réchauffement de la surface de la mer.

Ces événements climatiques périodiques sont des phénomènes naturels, qui se caractérisent par des fluctuations de température entre l’océan et l’atmosphère dans l’océan pacifique équatorial. En général, les vents alizés soufflent d’est en ouest le long de l’équateur, poussant les eaux chaudes de la surface de l’océan Pacifique vers l’ouest, où elles s’accumulent près de l’Indonésie et de l’Australie. L’eau froide remonte alors du fond de l’océan dans l’est du Pacifique, en remplaçant l’eau chaude, ce qui entraîne des eaux relativement fraîches à la surface des côtes sud-américaines.

Lorsque le phénomène El Niño survient, les alizés faiblissent ou s’inversent, ce qui réduit leur force ou les fait souffler d’ouest en est, ce qui permet à l’eau chaude accumulée dans l’ouest du Pacifique de se déplacer vers l’est en suivant l’équateur. Le réchauffement de la surface de la mer dans l’est du Pacifique provoque alors une augmentation de plusieurs degrés de la température de l’eau, avec de vastes répercussions sur les conditions météorologiques et climatiques à l’échelle mondiale.

Ces phénomènes peuvent durer plusieurs mois ou plusieurs années, et leur intensité est variable. Ils perturbent la météo localement (plus de pluies à certains endroits, plus de sécheresses à d’autres) et influencent le climat global, en particulier lors d’évènements El Niño intenses.

Quelles températures pour les prochains mois ?
Reprenons un à un les différents éléments décrits ci-dessus, et regardons ce qu’il en est en ce moment :

L’activité solaire approche de son maximum, du coup l’effet de réchauffement causé par une augmentation du rayonnement solaire est plus prononcé. Ceci conduit à une légère augmentation des températures moyennes, estimée à +0,1 °C.

Au niveau de l’activité volcanique, il s’est passé un évènement complètement exceptionnel : le volcan sous-marin Hunga Tonga qui a violemment érupté en janvier 2022 a envoyé environ 150 millions de tonnes (soit l’équivalent de 60 000 piscines olympiques…) de vapeur d’eau directement dans la stratosphère, qui s’est depuis répartie tout autour de la terre. Les simulations numériques montrent que ceci contribuera à réchauffer légèrement la surface terrestre (l’eau étant un puissant gaz à effet de serre), bien qu’il soit encore difficile de dire de combien et sur quelle durée.

Les gaz à effet de serre ont continué à s’accumuler, c’est le forçage radiatif qui domine tous les autres et conduirait déjà à une augmentation moyenne de +1,5 °C s’il n’y avait pas les aérosols pour tempérer un peu (-0,3 °C).

Depuis quelques années le contenu total en aérosol a tendance à diminuer, principalement car les véhicules polluent moins (ce qui est une bonne nouvelle !), c’est particulièrement le cas en Chine, en Europe de l’Ouest et aux États-Unis. Cette année, on observe aussi un moindre transport du sable du Sahara sur l’océan, qui d’habitude fait écran à la radiation solaire, ce qui explique en partie les températures élevées mesurées dans l’atlantique nord au début de l’été.

Après trois années en régime La Niña un évènement El Niño est en train de s’installer. À ce stade on ne sait pas encore s’il sera intense (comme en 2015-2017) ou modéré, et combien de temps il durera, mais on prévoit que les températures océaniques devraient être plus élevées pendant les 12-18 prochains mois par rapport aux trois années précédentes.

Tous les paramètres réunis pour des records de chaleur

En conclusion, tous les paramètres sont réunis pour que nous battions des records de températures au cours des prochains 12-18 mois. Du coup, les 1,5 °C en moyenne globale, soit la limite la plus ambitieuse de l’accord de Paris sur le climat, pourrait être dépassés sans attendre 2030, avec les incidences sur les systèmes naturels et humains bien documentées dans le rapport spécial du GIEC 2019.

Une augmentation de 1,5 °C ne semble pas énorme, mais il faut se souvenir que 70 % de notre planète est couverte d’eau, qui a une inertie thermique supérieure à la terre et se réchauffe moins vite. De plus, le réchauffement est inégalement réparti et les hautes latitudes se réchauffent beaucoup plus vite que les tropiques, avec des pics de 4° attendus sur ces régions.

Est-on sûr que cela va se passer ? Non, mais la probabilité qu’on dépasse dès maintenant un seuil qu’on pensait atteindre entre 2025 et 2040 est importante. Comme les émissions de gaz à effet de serre ne diminuent pas, il faudrait que des phénomènes naturels soient à l’œuvre au cours des prochains mois pour contrecarrer la tendance prévue.

Par exemple si le phénomène El Niño s’avère moins puissant qu’envisagé, ou si un autre volcan envoyait du SO2 massivement dans toute l’atmosphère, alors seulement dans ce cas de figure les records de températures pourraient ne pas être battus dès maintenant. À plus long terme, l’avenir nous dira quand les fluctuations naturelles domineront les contributions anthropiques pour expliquer les variations de température, selon l’efficacité des mesures prises dans le cadre des accords internationaux pour réguler le climat.

Température: Pourquoi fuir les villes

Température: Pourquoi fuir les villes

par
Guillaume Faburel
Professeur, chercheur à l’UMR Triangle, Université Lumière Lyon 2 dans The Conversation

Notons par ailleurs que cet extrait ne traite pas des questions d’insécurité ou encore de bruit. NDLR

Vider les villes ? Voilà bien a priori une hérésie. La ville, c’est le progrès et l’émancipation. Tous les grands moments de notre civilisation y sont chevillés, des cités-États aux villes-monde et métropoles d’aujourd’hui. Pourquoi diable vouloir les vider ? Simplement parce que tous les mois à travers le monde l’équivalent d’une ville comme New York sort de terre. À moins de croire dans le solutionnisme technologique et le durabilisme des transitions, il est temps de rouvrir une option envisagée dès les années 1970 : la désurbanisation de nos sociétés. Voici peut-être l’unique solution face à la dévastation écologique. Un seul « s » sépare demeure et démesure, celui de notre propre survie. Aujourd’hui, 58 % de la population mondiale est urbaine, soit près de 4,4 milliards d’habitants (dont presque 40 % résidant aux États-Unis, en Europe et en Chine), contre 751 millions en 1950. Cette proportion est même annoncée à 70 % en 2050 par l’Organisation des Nations unies (ONU).

[…]

Avec plus de vingt millions d’habitants, Mumbaï a vu sa superficie bâtie presque doubler entre 1991 et 2018, perdant ainsi 40 % de son couvert végétal. Dhaka, dont la population de l’agglomération excède aussi vingt millions d’habitants, a vu disparaître 55 % des zones cultivées, 47 % des zones humides et 38 % du couvert végétal entre 1960 et 2005. Pendant que la superficie bâtie augmentait de 134 %.

Plus près de nous, le Grand Paris est le chantier d’aménagement le plus important de l’histoire de la capitale depuis le Second Empire (XIXe siècle), avec pas moins de deux cents kilomètres de lignes de métro supplémentaires, cent soixante kilomètres de tunnels à percer, soixante-huit gares à construire, quatre-vingt mille logements par an à sortir de terre.

En France d’ailleurs, la population urbaine a augmenté de 20 % entre 1960 et 2018, pour officiellement dépasser les 80 % de la population hexagonale en 2020, ramenés toutefois à 67 % en ne tenant plus uniquement compte de l’influence des villes mais aussi de la taille des peuplements (critère de densité des constructions). Près de la moitié vit dans l’une des vingt-deux grandes villes (dont quatre millionnaires en nombre d’habitants), à ce jour officiellement dénommées métropoles. Et, depuis ces centres métropolitains jusqu’aux couronnes périurbaines, comme dans un bon tiers des périmètres de villes moyennes et d’inter-communalités (elles-mêmes grossissantes par volontarisme réglementaire), l’urbanisation croît deux fois plus vite en surface qu’en population (et même trois fois dans les années 1990, soit annuellement la taille de Marseille, un département tous les dix ans, la Région Provence-Alpes-Côte d’Azur en cinquante ans).

La métropolisation du monde

Les foyers premiers ainsi que le modèle principal de cette croissance sont assurés par les grandes agglomérations, au premier chef les sept villes-monde (New York, Hongkong, Londres, Paris, Tokyo, Singapour et Séoul) et leurs épigones, cent vingt métropoles internationales. Elles représentent en cumul 12 % de la population mondiale pour 48 % du Produit Intérieur Brut (PIB) mondial. Il y a donc du capital à fixer et de la « richesse » à produire… À condition de continuer à grossir. Tokyo a déjà un PIB supérieur à celui du Canada, Paris à celui de la Suisse…

Engagée depuis une quarantaine d’années dans les pays occidentaux, la métropolisation représente le stade néolibéral de l’économie mondialisée : polarisation urbaine des nouvelles activités dites postindustrielles et conversion rapide des pouvoirs métropolitains aux logiques de firme marchande.

Elle incarne l’avantage acquis ces dernières décennies par les grandes villes : articulation des fonctions de commandement (ex : directions d’entreprises) et de communication (ex : aéroports, interconnexions ferroviaires, etc.), polarisation des marchés financiers (ex : places boursières et organismes bancaires), des marchés d’emplois de « haut niveau » – que l’Insee qualifie de métropolitains depuis 2002 (conception-recherche et prestations intellectuelles, commerce interentreprises et gestion managériale, culture et loisirs) ou encore de marchés segmentés de consommation (tourisme, art, technologies…).

[…]

Or, occupant seulement 2 % de la surface de la Terre, le fait urbain décrit produit 70 % des déchets, émet 75 % des émissions de gaz à effet de serre (GES), consomme 78 % de l’énergie et émet plus 90 % de l’ensemble des polluants émis dans l’air pour, souvenons-nous, 58 % de la population mondiale.

Pour les seuls GES, vingt-cinq des cent soixante-sept plus grandes villes du monde sont responsables de près de la moitié des émissions urbaines de CO2 – la fabrication du ciment représentant près de 10 % des émissions mondiales, en augmentation de 80 % en dix ans. À ce jour, 40 % de la population urbaine mondiale vit dans des villes où l’exposition à la chaleur extrême a triplé sur les trente-cinq dernières années.

Plusieurs mégapoles s’enfoncent annuellement de plusieurs centimètres sous le poids de la densité des matériaux de construction et du pompage des nappes phréatiques (Mexico, Téhéran, Nairobi, Djakarta…). La prévalence des maladies dites de civilisation est nettement plus importante dans les grandes villes, responsables de quarante et un millions de décès annuels à travers le monde (cancers, maladies cardiovasculaires et pulmonaires, diabète et obésité, troubles psychiques et maladies mentales).

Enfin, selon le Fonds monétaire international, à l’horizon de la fin du siècle, 74 % de la population mondiale (annoncée en 2100 urbaine à 80 %) vivra des canicules mortelles plus de vingt jours par an. Un point de comparaison : la canicule de 2003 en France, 15 000 morts, en dix-huit jours. D’ailleurs, en France, les pollutions atmosphériques des grandes villes sont responsables de 50 000 morts annuellement.

Le secteur du bâtiment-travaux publics (BTP), toutes constructions confondues (mais à 90 % dans les aires définies comme urbaines), représente 46 % de la consommation énergétique, 40 % de notre production de déchets et 25 % des émissions de GES. L’autonomie alimentaire des cent premières villes est de trois jours (98 % d’alimentation importée) et Paris, par tous ses hectares nécessaires, a une empreinte écologique trois cent treize fois plus lourde que sa propre superficie.

[…]

Si l’on croise les données de nos impacts écologiques avec celles des limites planétaires, on constate que l’empreinte moyenne de chaque Français va devoir être divisée par quatre à six pour prétendre à la neutralité carbone à horizon de 2050. Pour ce faire, loin du technosolutionnisme ambiant et du durabilisme du verdissement, l’autonomie, comprise comme autosubsistance et autogestion, est le seul moyen de se figurer l’ensemble de nos pressions et de les contenir par l’autodétermination des besoins, au plus près des ressources et de leurs écosystèmes. Ceci, sans pour autant négliger nos interdépendances sociales et quelques-unes de nos libertés.

Or pour faire autonomie, toute ville devrait produire 100 % de son énergie, qui plus est renouvelable (or, à ce jour, Lyon, Bordeaux ou Rennes n’en produisent par exemple que 7 % à 8 % , non renouvelables), remettre en pleine terre entre 50 % et 60 % des sols pour la production vivrière et le respect du cycle de l’eau (à ce jour, entre 1 % et 1,5 % dans les villes labellisées Métropoles françaises), ou encore restituer aux écosystèmes au moins 15 % des sols urbanisés pour la biodiversité. Tout ceci est infaisable morphologiquement et, quoi qu’il en soit, impensable dans le cadre d’une ville devenue médiation première du capital.

Nous n’avons en fait pas d’autre choix que de nous affranchir des grandes centralités et de leurs polarités, comme certains espaces périurbains commencent à le faire ; en déconcentrant et en relocalisant, en décentralisant, sans omettre de décoloniser quelques habitudes et modes de vie.

Mais comment passer de l’ère de taire l’inconséquence de nos écologies urbaines à l’âge du faire des géographies posturbaines, sans pour autant rétrécir la société par le jeu des identités et le retour de quelques barbelés ? Quelles sont les conditions d’une désurbanisation sans perte d’altérité, et sans oublier cette fois la communauté biotique ?

Bientôt, le débranchement urbain ?

Cette autre géographie est d’ores et déjà en construction, à bas bruit. Les espaces plus ouverts, ceux des campagnes, offrent d’autres possibilités, sous condition de révision de quelques comportements, particulièrement ceux liés à nos mobilités, connectivités et divertissements. En France, cela correspond au foisonnement d’alternatives au sein des espaces dessinés par les treize mille petites villes et petites villes de proximité, bourgs et villages centre, auxquels il faut ajouter les milliers d’autres villages, hameaux et lieux-dit : néoruralités qui connaissent leur septième vague d’installation, néopaysanneries dynamiques, zones à défendre, communautés existentielles/intentionnelles, écolieux et fermes sociales…

Permaculture et autosubsistance vivrière, chantiers participatifs et autoconstruction bioclimatique, épiceries sociales ambulantes et médiathèques villageoises itinérantes, fêtes locales et savoirs vernaculaires… sont clairement ici en ligne de mire. Et l’on pourrait imaginer des foires locales aux logements, puisque près de trois millions sont vacants dans les périphéries, alors que ce secteur est prétendument en crise. Et, toute cette effervescence ne concerne pas moins de 30 % du territoire hexagonal.

Là serait la raison du débranchement urbain : cesser d’être les agents involontaires des méga-machines urbaines en recouvrant de la puissance d’agir, non plus pour faire masse contre la nature mais pour faire corps avec le vivant. Le triptyque habiter la terre, coopérer par le faire, autogérer de manière solidaire peut constituer la matrice d’une société écologique posturbaine. À condition de vider les villes, les grandes, et de cheminer enfin vers le suffisant.

Climat-Environnement: Pourquoi il faut fuir les villes

Climat-Environnement: Pourquoi il faut fuir les villes

par
Guillaume Faburel
Professeur, chercheur à l’UMR Triangle, Université Lumière Lyon 2 dans The Conversation

Notons par ailleurs que cet extrait ne traite pas des questions d’insécurité ou encore de bruit. NDLR

Vider les villes ? Voilà bien a priori une hérésie. La ville, c’est le progrès et l’émancipation. Tous les grands moments de notre civilisation y sont chevillés, des cités-États aux villes-monde et métropoles d’aujourd’hui. Pourquoi diable vouloir les vider ? Simplement parce que tous les mois à travers le monde l’équivalent d’une ville comme New York sort de terre. À moins de croire dans le solutionnisme technologique et le durabilisme des transitions, il est temps de rouvrir une option envisagée dès les années 1970 : la désurbanisation de nos sociétés. Voici peut-être l’unique solution face à la dévastation écologique. Un seul « s » sépare demeure et démesure, celui de notre propre survie. Aujourd’hui, 58 % de la population mondiale est urbaine, soit près de 4,4 milliards d’habitants (dont presque 40 % résidant aux États-Unis, en Europe et en Chine), contre 751 millions en 1950. Cette proportion est même annoncée à 70 % en 2050 par l’Organisation des Nations unies (ONU).

[…]

Avec plus de vingt millions d’habitants, Mumbaï a vu sa superficie bâtie presque doubler entre 1991 et 2018, perdant ainsi 40 % de son couvert végétal. Dhaka, dont la population de l’agglomération excède aussi vingt millions d’habitants, a vu disparaître 55 % des zones cultivées, 47 % des zones humides et 38 % du couvert végétal entre 1960 et 2005. Pendant que la superficie bâtie augmentait de 134 %.

Plus près de nous, le Grand Paris est le chantier d’aménagement le plus important de l’histoire de la capitale depuis le Second Empire (XIXe siècle), avec pas moins de deux cents kilomètres de lignes de métro supplémentaires, cent soixante kilomètres de tunnels à percer, soixante-huit gares à construire, quatre-vingt mille logements par an à sortir de terre.

En France d’ailleurs, la population urbaine a augmenté de 20 % entre 1960 et 2018, pour officiellement dépasser les 80 % de la population hexagonale en 2020, ramenés toutefois à 67 % en ne tenant plus uniquement compte de l’influence des villes mais aussi de la taille des peuplements (critère de densité des constructions). Près de la moitié vit dans l’une des vingt-deux grandes villes (dont quatre millionnaires en nombre d’habitants), à ce jour officiellement dénommées métropoles. Et, depuis ces centres métropolitains jusqu’aux couronnes périurbaines, comme dans un bon tiers des périmètres de villes moyennes et d’inter-communalités (elles-mêmes grossissantes par volontarisme réglementaire), l’urbanisation croît deux fois plus vite en surface qu’en population (et même trois fois dans les années 1990, soit annuellement la taille de Marseille, un département tous les dix ans, la Région Provence-Alpes-Côte d’Azur en cinquante ans).

La métropolisation du monde

Les foyers premiers ainsi que le modèle principal de cette croissance sont assurés par les grandes agglomérations, au premier chef les sept villes-monde (New York, Hongkong, Londres, Paris, Tokyo, Singapour et Séoul) et leurs épigones, cent vingt métropoles internationales. Elles représentent en cumul 12 % de la population mondiale pour 48 % du Produit Intérieur Brut (PIB) mondial. Il y a donc du capital à fixer et de la « richesse » à produire… À condition de continuer à grossir. Tokyo a déjà un PIB supérieur à celui du Canada, Paris à celui de la Suisse…

Engagée depuis une quarantaine d’années dans les pays occidentaux, la métropolisation représente le stade néolibéral de l’économie mondialisée : polarisation urbaine des nouvelles activités dites postindustrielles et conversion rapide des pouvoirs métropolitains aux logiques de firme marchande.

Elle incarne l’avantage acquis ces dernières décennies par les grandes villes : articulation des fonctions de commandement (ex : directions d’entreprises) et de communication (ex : aéroports, interconnexions ferroviaires, etc.), polarisation des marchés financiers (ex : places boursières et organismes bancaires), des marchés d’emplois de « haut niveau » – que l’Insee qualifie de métropolitains depuis 2002 (conception-recherche et prestations intellectuelles, commerce interentreprises et gestion managériale, culture et loisirs) ou encore de marchés segmentés de consommation (tourisme, art, technologies…).

[…]

Or, occupant seulement 2 % de la surface de la Terre, le fait urbain décrit produit 70 % des déchets, émet 75 % des émissions de gaz à effet de serre (GES), consomme 78 % de l’énergie et émet plus 90 % de l’ensemble des polluants émis dans l’air pour, souvenons-nous, 58 % de la population mondiale.

Pour les seuls GES, vingt-cinq des cent soixante-sept plus grandes villes du monde sont responsables de près de la moitié des émissions urbaines de CO2 – la fabrication du ciment représentant près de 10 % des émissions mondiales, en augmentation de 80 % en dix ans. À ce jour, 40 % de la population urbaine mondiale vit dans des villes où l’exposition à la chaleur extrême a triplé sur les trente-cinq dernières années.

Plusieurs mégapoles s’enfoncent annuellement de plusieurs centimètres sous le poids de la densité des matériaux de construction et du pompage des nappes phréatiques (Mexico, Téhéran, Nairobi, Djakarta…). La prévalence des maladies dites de civilisation est nettement plus importante dans les grandes villes, responsables de quarante et un millions de décès annuels à travers le monde (cancers, maladies cardiovasculaires et pulmonaires, diabète et obésité, troubles psychiques et maladies mentales).

Enfin, selon le Fonds monétaire international, à l’horizon de la fin du siècle, 74 % de la population mondiale (annoncée en 2100 urbaine à 80 %) vivra des canicules mortelles plus de vingt jours par an. Un point de comparaison : la canicule de 2003 en France, 15 000 morts, en dix-huit jours. D’ailleurs, en France, les pollutions atmosphériques des grandes villes sont responsables de 50 000 morts annuellement.

Le secteur du bâtiment-travaux publics (BTP), toutes constructions confondues (mais à 90 % dans les aires définies comme urbaines), représente 46 % de la consommation énergétique, 40 % de notre production de déchets et 25 % des émissions de GES. L’autonomie alimentaire des cent premières villes est de trois jours (98 % d’alimentation importée) et Paris, par tous ses hectares nécessaires, a une empreinte écologique trois cent treize fois plus lourde que sa propre superficie.

[…]

Si l’on croise les données de nos impacts écologiques avec celles des limites planétaires, on constate que l’empreinte moyenne de chaque Français va devoir être divisée par quatre à six pour prétendre à la neutralité carbone à horizon de 2050. Pour ce faire, loin du technosolutionnisme ambiant et du durabilisme du verdissement, l’autonomie, comprise comme autosubsistance et autogestion, est le seul moyen de se figurer l’ensemble de nos pressions et de les contenir par l’autodétermination des besoins, au plus près des ressources et de leurs écosystèmes. Ceci, sans pour autant négliger nos interdépendances sociales et quelques-unes de nos libertés.

Or pour faire autonomie, toute ville devrait produire 100 % de son énergie, qui plus est renouvelable (or, à ce jour, Lyon, Bordeaux ou Rennes n’en produisent par exemple que 7 % à 8 % , non renouvelables), remettre en pleine terre entre 50 % et 60 % des sols pour la production vivrière et le respect du cycle de l’eau (à ce jour, entre 1 % et 1,5 % dans les villes labellisées Métropoles françaises), ou encore restituer aux écosystèmes au moins 15 % des sols urbanisés pour la biodiversité. Tout ceci est infaisable morphologiquement et, quoi qu’il en soit, impensable dans le cadre d’une ville devenue médiation première du capital.

Nous n’avons en fait pas d’autre choix que de nous affranchir des grandes centralités et de leurs polarités, comme certains espaces périurbains commencent à le faire ; en déconcentrant et en relocalisant, en décentralisant, sans omettre de décoloniser quelques habitudes et modes de vie.

Mais comment passer de l’ère de taire l’inconséquence de nos écologies urbaines à l’âge du faire des géographies posturbaines, sans pour autant rétrécir la société par le jeu des identités et le retour de quelques barbelés ? Quelles sont les conditions d’une désurbanisation sans perte d’altérité, et sans oublier cette fois la communauté biotique ?

Bientôt, le débranchement urbain ?

Cette autre géographie est d’ores et déjà en construction, à bas bruit. Les espaces plus ouverts, ceux des campagnes, offrent d’autres possibilités, sous condition de révision de quelques comportements, particulièrement ceux liés à nos mobilités, connectivités et divertissements. En France, cela correspond au foisonnement d’alternatives au sein des espaces dessinés par les treize mille petites villes et petites villes de proximité, bourgs et villages centre, auxquels il faut ajouter les milliers d’autres villages, hameaux et lieux-dit : néoruralités qui connaissent leur septième vague d’installation, néopaysanneries dynamiques, zones à défendre, communautés existentielles/intentionnelles, écolieux et fermes sociales…

Permaculture et autosubsistance vivrière, chantiers participatifs et autoconstruction bioclimatique, épiceries sociales ambulantes et médiathèques villageoises itinérantes, fêtes locales et savoirs vernaculaires… sont clairement ici en ligne de mire. Et l’on pourrait imaginer des foires locales aux logements, puisque près de trois millions sont vacants dans les périphéries, alors que ce secteur est prétendument en crise. Et, toute cette effervescence ne concerne pas moins de 30 % du territoire hexagonal.

Là serait la raison du débranchement urbain : cesser d’être les agents involontaires des méga-machines urbaines en recouvrant de la puissance d’agir, non plus pour faire masse contre la nature mais pour faire corps avec le vivant. Le triptyque habiter la terre, coopérer par le faire, autogérer de manière solidaire peut constituer la matrice d’une société écologique posturbaine. À condition de vider les villes, les grandes, et de cheminer enfin vers le suffisant.

Température : nouveaux records, pourquoi ?

Température : nouveaux records, pourquoi ?

par
Cathy Clerbaux
Directrice de recherche au CNRS (LATMOS/IPSL), professeure invitée Université libre de Bruxelles, Sorbonne Université dans the Conversation


Les phénomènes météorologiques locaux sont difficiles à prévoir car ils fluctuent rapidement sous l’influence de processus non linéaires et chaotiques, tandis que l’évolution du climat global sur le plus long terme repose sur des phénomènes physiques bien connus qui sont généralement prévisibles. Les prochains 12-18 mois devraient être assez exceptionnels en termes de températures, suite à un alignement de phénomènes locaux et globaux qui se combinent.

Avec mon équipe dont la spécialité est l’étude par satellites de l’évolution de l’atmosphère, j’analyse chaque jour des millions de données vues du ciel pour surveiller les températures sur terre comme sur la mer, partout autour du globe terrestre, et pour mesurer les concentrations des gaz présents dans l’atmosphère. Ces dernières semaines à partir des cartes satellites, nous avons aussi pu observer les records de chaleur qui ont été battus dans de nombreux pays, comme rapportés par les agences météorologiques et les médias.

Un marqueur important a fait les gros titres : il s’agit de l’augmentation de la température moyenne globale de 1,5 °C par rapport à l’époque préindustrielle. Une valeur repère dans l’accord de Paris sur le climat, qui a été dépassée plusieurs jours cet été. Serait-il possible que cette valeur soit également dépassée quand il s’agira de calculer la moyenne annuelle des températures globales pour l’année 2023 ?

Pour comprendre l’évolution des températures, il faut tenir compte du fait que notre climat est complexe : il dépend des interactions entre les activités humaines, l’atmosphère, la surface terrestre et la végétation, la neige et la glace, et les océans. Le système climatique évolue sous l’influence de sa propre dynamique interne, mais dépend également de facteurs externes, qu’on appelle les « forçages radiatifs », et qui sont exprimés en watts par mètres carrés (W/m2).

Le terme forçage est utilisé pour indiquer que l’équilibre radiatif de la Terre est déstabilisé, et le terme radiatif est lui convoqué car ces facteurs modifient l’équilibre entre le rayonnement solaire entrant et le rayonnement infrarouge sortant de l’atmosphère. Cet équilibre radiatif contrôle la température à différentes altitudes. Un forçage positif implique une augmentation de la température à la surface de la Terre, et à l’inverse un forçage négatif implique une diminution.

Les forçages externes sont à la fois causés par des phénomènes naturels tels que les éruptions volcaniques et les variations du rayonnement solaire, mais également par des modifications de la composition atmosphérique imputables à l’homme (les gaz à effet de serre et les particules liés aux activités humaines). Comprendre les changements climatiques observés depuis une trentaine d’années implique de pouvoir distinguer les modifications liées aux activités humaines de celles associées aux variations naturelles du climat. Les principaux forçages qui vont intervenir et s’additionner sont :

Le forçage lié aux variations de l’activité solaire, qui entraîne des changements du rayonnement solaire qui atteint la Terre. Lorsque le Soleil est plus actif (maximum solaire), il émet davantage de rayonnement. Ce forçage est faible (de + à -0,3 W/m2) mais dure assez longtemps. Son cycle principal est d’environ 11 ans. Il trouve son origine dans les changements du champ magnétique solaire qui se caractérisent par des variations dans le nombre de taches solaires et d’autres phénomènes solaires.

Le forçage lié aux éruptions volcaniques, qui peut être très intense et est en général négatif de -1 à -5 W/m2, mais de courte durée (un à deux ans). Les éruptions volcaniques peuvent avoir un impact significatif sur le climat en raison de l’injection de grandes quantités de cendres, de gaz et de particules dans l’atmosphère.
Tous les volcans n’ont pas un impact sur le climat global, cela dépend de la taille et de la puissance de l’éruption, de l’altitude/de la latitude auxquelles les gaz et les cendres sont éjectés, ainsi que des conditions météorologiques locales. L’étude des éruptions volcaniques passées nous a appris que l’impact le plus significatif est associé à des éruptions proches de l’équateur qui injectent du SO2 haut dans l’atmosphère, par exemple le Mont Pinatubo (Philippines) en 1991. Ce gaz se transforme en gouttelettes d’acide sulfurique (H2SO4) qui constituent un écran pour la radiation solaire traversant l’atmosphère.

Le forçage lié à l’excès de gaz à effet de serre, en particulier le dioxyde de carbone (CO2), le méthane (CH4), le protoxyde d’azote (N2O) et les chlorofluorocarbures (CFC), qui sont transparents à la lumière solaire mais absorbent une partie du rayonnement thermique émis par la surface terrestre. Au fil du temps, les activités humaines, telles que la combustion de combustibles fossiles, la déforestation et l’agriculture, ont entraîné une augmentation significative des concentrations de gaz à effet de serre dans l’atmosphère. L’accumulation de ces gaz à effet de serre, qui absorbent davantage de rayonnement thermique émis par la Terre et piègent plus de chaleur dans l’atmosphère, entraîne un forçage radiatif positif, estimé à +3 W/m2. Il s’agit donc du forçage le plus important car il n’est pas transitoire comme celui associé aux volcans.

Le forçage négatif lié aux aérosols d’origine anthropique et naturelle. Les aérosols sont de petites particules en suspension dans l’atmosphère qui absorbent, diffusent ou réfléchissent la lumière solaire. Elles proviennent des écosystèmes (embruns marins, sables, poussières, cendres volcaniques, aérosols biogéniques) et d’activités humaines comme la combustion de fiouls fossiles, le brûlage de la biomasse et les feux de forêt, l’élevage des animaux et l’usage d’engrais. Toutes ces particules font écran à l’insolation mais cette fois dans les basses couches de l’atmosphère. Même si les incertitudes sur le total du forçage radiatif lié à la présence d’aérosols restent élevées, les estimations actuelles indiquent un forçage radiatif total négatif de -0,5 W/m2. Sans la pollution par les aérosols, la Terre serait donc encore plus chaude qu’elle ne l’est déjà !

En plus des forçages radiatifs, il faut aussi tenir compte de la variabilité naturelle du système couplé océan-atmosphère, et en particulier du phénomène ENSO (El Niño Southern Oscillation), avec sa composante chaude El Niño et sa composante froide La Niña. Ces phénomènes sont les principaux facteurs de variation d’une année sur l’autre, dont il faut tenir compte quand on analyse la tendance à long terme au réchauffement de la surface de la mer.

Ces événements climatiques périodiques sont des phénomènes naturels, qui se caractérisent par des fluctuations de température entre l’océan et l’atmosphère dans l’océan pacifique équatorial. En général, les vents alizés soufflent d’est en ouest le long de l’équateur, poussant les eaux chaudes de la surface de l’océan Pacifique vers l’ouest, où elles s’accumulent près de l’Indonésie et de l’Australie. L’eau froide remonte alors du fond de l’océan dans l’est du Pacifique, en remplaçant l’eau chaude, ce qui entraîne des eaux relativement fraîches à la surface des côtes sud-américaines.

Lorsque le phénomène El Niño survient, les alizés faiblissent ou s’inversent, ce qui réduit leur force ou les fait souffler d’ouest en est, ce qui permet à l’eau chaude accumulée dans l’ouest du Pacifique de se déplacer vers l’est en suivant l’équateur. Le réchauffement de la surface de la mer dans l’est du Pacifique provoque alors une augmentation de plusieurs degrés de la température de l’eau, avec de vastes répercussions sur les conditions météorologiques et climatiques à l’échelle mondiale.

Ces phénomènes peuvent durer plusieurs mois ou plusieurs années, et leur intensité est variable. Ils perturbent la météo localement (plus de pluies à certains endroits, plus de sécheresses à d’autres) et influencent le climat global, en particulier lors d’évènements El Niño intenses.

Quelles températures pour les prochains mois ?

Reprenons un à un les différents éléments décrits ci-dessus, et regardons ce qu’il en est en ce moment :

L’activité solaire approche de son maximum, du coup l’effet de réchauffement causé par une augmentation du rayonnement solaire est plus prononcé. Ceci conduit à une légère augmentation des températures moyennes, estimée à +0,1 °C.

Au niveau de l’activité volcanique, il s’est passé un évènement complètement exceptionnel : le volcan sous-marin Hunga Tonga qui a violemment érupté en janvier 2022 a envoyé environ 150 millions de tonnes (soit l’équivalent de 60 000 piscines olympiques…) de vapeur d’eau directement dans la stratosphère, qui s’est depuis répartie tout autour de la terre. Les simulations numériques montrent que ceci contribuera à réchauffer légèrement la surface terrestre (l’eau étant un puissant gaz à effet de serre), bien qu’il soit encore difficile de dire de combien et sur quelle durée.

Les gaz à effet de serre ont continué à s’accumuler, c’est le forçage radiatif qui domine tous les autres et conduirait déjà à une augmentation moyenne de +1,5 °C s’il n’y avait pas les aérosols pour tempérer un peu (-0,3 °C).

Climat-Environnement: Pourquoi il faut fuir les villes ?

Climat-Environnement: Pourquoi il faut fuir les villes

par
Guillaume Faburel
Professeur, chercheur à l’UMR Triangle, Université Lumière Lyon 2 dans The Conversation

Notons par ailleurs que cet extrait ne traite pas des questions d’insécurité ou encore de bruit. NDLR

Vider les villes ? Voilà bien a priori une hérésie. La ville, c’est le progrès et l’émancipation. Tous les grands moments de notre civilisation y sont chevillés, des cités-États aux villes-monde et métropoles d’aujourd’hui. Pourquoi diable vouloir les vider ? Simplement parce que tous les mois à travers le monde l’équivalent d’une ville comme New York sort de terre. À moins de croire dans le solutionnisme technologique et le durabilisme des transitions, il est temps de rouvrir une option envisagée dès les années 1970 : la désurbanisation de nos sociétés. Voici peut-être l’unique solution face à la dévastation écologique. Un seul « s » sépare demeure et démesure, celui de notre propre survie. Aujourd’hui, 58 % de la population mondiale est urbaine, soit près de 4,4 milliards d’habitants (dont presque 40 % résidant aux États-Unis, en Europe et en Chine), contre 751 millions en 1950. Cette proportion est même annoncée à 70 % en 2050 par l’Organisation des Nations unies (ONU).

[…]

Avec plus de vingt millions d’habitants, Mumbaï a vu sa superficie bâtie presque doubler entre 1991 et 2018, perdant ainsi 40 % de son couvert végétal. Dhaka, dont la population de l’agglomération excède aussi vingt millions d’habitants, a vu disparaître 55 % des zones cultivées, 47 % des zones humides et 38 % du couvert végétal entre 1960 et 2005. Pendant que la superficie bâtie augmentait de 134 %.

Plus près de nous, le Grand Paris est le chantier d’aménagement le plus important de l’histoire de la capitale depuis le Second Empire (XIXe siècle), avec pas moins de deux cents kilomètres de lignes de métro supplémentaires, cent soixante kilomètres de tunnels à percer, soixante-huit gares à construire, quatre-vingt mille logements par an à sortir de terre.

En France d’ailleurs, la population urbaine a augmenté de 20 % entre 1960 et 2018, pour officiellement dépasser les 80 % de la population hexagonale en 2020, ramenés toutefois à 67 % en ne tenant plus uniquement compte de l’influence des villes mais aussi de la taille des peuplements (critère de densité des constructions). Près de la moitié vit dans l’une des vingt-deux grandes villes (dont quatre millionnaires en nombre d’habitants), à ce jour officiellement dénommées métropoles. Et, depuis ces centres métropolitains jusqu’aux couronnes périurbaines, comme dans un bon tiers des périmètres de villes moyennes et d’inter-communalités (elles-mêmes grossissantes par volontarisme réglementaire), l’urbanisation croît deux fois plus vite en surface qu’en population (et même trois fois dans les années 1990, soit annuellement la taille de Marseille, un département tous les dix ans, la Région Provence-Alpes-Côte d’Azur en cinquante ans).

La métropolisation du monde

Les foyers premiers ainsi que le modèle principal de cette croissance sont assurés par les grandes agglomérations, au premier chef les sept villes-monde (New York, Hongkong, Londres, Paris, Tokyo, Singapour et Séoul) et leurs épigones, cent vingt métropoles internationales. Elles représentent en cumul 12 % de la population mondiale pour 48 % du Produit Intérieur Brut (PIB) mondial. Il y a donc du capital à fixer et de la « richesse » à produire… À condition de continuer à grossir. Tokyo a déjà un PIB supérieur à celui du Canada, Paris à celui de la Suisse…

Engagée depuis une quarantaine d’années dans les pays occidentaux, la métropolisation représente le stade néolibéral de l’économie mondialisée : polarisation urbaine des nouvelles activités dites postindustrielles et conversion rapide des pouvoirs métropolitains aux logiques de firme marchande.

Elle incarne l’avantage acquis ces dernières décennies par les grandes villes : articulation des fonctions de commandement (ex : directions d’entreprises) et de communication (ex : aéroports, interconnexions ferroviaires, etc.), polarisation des marchés financiers (ex : places boursières et organismes bancaires), des marchés d’emplois de « haut niveau » – que l’Insee qualifie de métropolitains depuis 2002 (conception-recherche et prestations intellectuelles, commerce interentreprises et gestion managériale, culture et loisirs) ou encore de marchés segmentés de consommation (tourisme, art, technologies…).

[…]

Or, occupant seulement 2 % de la surface de la Terre, le fait urbain décrit produit 70 % des déchets, émet 75 % des émissions de gaz à effet de serre (GES), consomme 78 % de l’énergie et émet plus 90 % de l’ensemble des polluants émis dans l’air pour, souvenons-nous, 58 % de la population mondiale.

Pour les seuls GES, vingt-cinq des cent soixante-sept plus grandes villes du monde sont responsables de près de la moitié des émissions urbaines de CO2 – la fabrication du ciment représentant près de 10 % des émissions mondiales, en augmentation de 80 % en dix ans. À ce jour, 40 % de la population urbaine mondiale vit dans des villes où l’exposition à la chaleur extrême a triplé sur les trente-cinq dernières années.

Plusieurs mégapoles s’enfoncent annuellement de plusieurs centimètres sous le poids de la densité des matériaux de construction et du pompage des nappes phréatiques (Mexico, Téhéran, Nairobi, Djakarta…). La prévalence des maladies dites de civilisation est nettement plus importante dans les grandes villes, responsables de quarante et un millions de décès annuels à travers le monde (cancers, maladies cardiovasculaires et pulmonaires, diabète et obésité, troubles psychiques et maladies mentales).

Enfin, selon le Fonds monétaire international, à l’horizon de la fin du siècle, 74 % de la population mondiale (annoncée en 2100 urbaine à 80 %) vivra des canicules mortelles plus de vingt jours par an. Un point de comparaison : la canicule de 2003 en France, 15 000 morts, en dix-huit jours. D’ailleurs, en France, les pollutions atmosphériques des grandes villes sont responsables de 50 000 morts annuellement.

Le secteur du bâtiment-travaux publics (BTP), toutes constructions confondues (mais à 90 % dans les aires définies comme urbaines), représente 46 % de la consommation énergétique, 40 % de notre production de déchets et 25 % des émissions de GES. L’autonomie alimentaire des cent premières villes est de trois jours (98 % d’alimentation importée) et Paris, par tous ses hectares nécessaires, a une empreinte écologique trois cent treize fois plus lourde que sa propre superficie.

[…]

Si l’on croise les données de nos impacts écologiques avec celles des limites planétaires, on constate que l’empreinte moyenne de chaque Français va devoir être divisée par quatre à six pour prétendre à la neutralité carbone à horizon de 2050. Pour ce faire, loin du technosolutionnisme ambiant et du durabilisme du verdissement, l’autonomie, comprise comme autosubsistance et autogestion, est le seul moyen de se figurer l’ensemble de nos pressions et de les contenir par l’autodétermination des besoins, au plus près des ressources et de leurs écosystèmes. Ceci, sans pour autant négliger nos interdépendances sociales et quelques-unes de nos libertés.

Or pour faire autonomie, toute ville devrait produire 100 % de son énergie, qui plus est renouvelable (or, à ce jour, Lyon, Bordeaux ou Rennes n’en produisent par exemple que 7 % à 8 % , non renouvelables), remettre en pleine terre entre 50 % et 60 % des sols pour la production vivrière et le respect du cycle de l’eau (à ce jour, entre 1 % et 1,5 % dans les villes labellisées Métropoles françaises), ou encore restituer aux écosystèmes au moins 15 % des sols urbanisés pour la biodiversité. Tout ceci est infaisable morphologiquement et, quoi qu’il en soit, impensable dans le cadre d’une ville devenue médiation première du capital.

Nous n’avons en fait pas d’autre choix que de nous affranchir des grandes centralités et de leurs polarités, comme certains espaces périurbains commencent à le faire ; en déconcentrant et en relocalisant, en décentralisant, sans omettre de décoloniser quelques habitudes et modes de vie.

Mais comment passer de l’ère de taire l’inconséquence de nos écologies urbaines à l’âge du faire des géographies posturbaines, sans pour autant rétrécir la société par le jeu des identités et le retour de quelques barbelés ? Quelles sont les conditions d’une désurbanisation sans perte d’altérité, et sans oublier cette fois la communauté biotique ?

Bientôt, le débranchement urbain ?

Cette autre géographie est d’ores et déjà en construction, à bas bruit. Les espaces plus ouverts, ceux des campagnes, offrent d’autres possibilités, sous condition de révision de quelques comportements, particulièrement ceux liés à nos mobilités, connectivités et divertissements. En France, cela correspond au foisonnement d’alternatives au sein des espaces dessinés par les treize mille petites villes et petites villes de proximité, bourgs et villages centre, auxquels il faut ajouter les milliers d’autres villages, hameaux et lieux-dit : néoruralités qui connaissent leur septième vague d’installation, néopaysanneries dynamiques, zones à défendre, communautés existentielles/intentionnelles, écolieux et fermes sociales…

Permaculture et autosubsistance vivrière, chantiers participatifs et autoconstruction bioclimatique, épiceries sociales ambulantes et médiathèques villageoises itinérantes, fêtes locales et savoirs vernaculaires… sont clairement ici en ligne de mire. Et l’on pourrait imaginer des foires locales aux logements, puisque près de trois millions sont vacants dans les périphéries, alors que ce secteur est prétendument en crise. Et, toute cette effervescence ne concerne pas moins de 30 % du territoire hexagonal.

Là serait la raison du débranchement urbain : cesser d’être les agents involontaires des méga-machines urbaines en recouvrant de la puissance d’agir, non plus pour faire masse contre la nature mais pour faire corps avec le vivant. Le triptyque habiter la terre, coopérer par le faire, autogérer de manière solidaire peut constituer la matrice d’une société écologique posturbaine. À condition de vider les villes, les grandes, et de cheminer enfin vers le suffisant.

Environnement: Pourquoi il faut fuir les villes

Environnement: Pourquoi il faut fuir les villes

par
Guillaume Faburel
Professeur, chercheur à l’UMR Triangle, Université Lumière Lyon 2 dans The Conversation

Notons par ailleurs que cet extrait ne traite pas des questions d’insécurité ou encore de bruit. NDLR

Vider les villes ? Voilà bien a priori une hérésie. La ville, c’est le progrès et l’émancipation. Tous les grands moments de notre civilisation y sont chevillés, des cités-États aux villes-monde et métropoles d’aujourd’hui. Pourquoi diable vouloir les vider ? Simplement parce que tous les mois à travers le monde l’équivalent d’une ville comme New York sort de terre. À moins de croire dans le solutionnisme technologique et le durabilisme des transitions, il est temps de rouvrir une option envisagée dès les années 1970 : la désurbanisation de nos sociétés. Voici peut-être l’unique solution face à la dévastation écologique. Un seul « s » sépare demeure et démesure, celui de notre propre survie. Aujourd’hui, 58 % de la population mondiale est urbaine, soit près de 4,4 milliards d’habitants (dont presque 40 % résidant aux États-Unis, en Europe et en Chine), contre 751 millions en 1950. Cette proportion est même annoncée à 70 % en 2050 par l’Organisation des Nations unies (ONU).

[…]

Avec plus de vingt millions d’habitants, Mumbaï a vu sa superficie bâtie presque doubler entre 1991 et 2018, perdant ainsi 40 % de son couvert végétal. Dhaka, dont la population de l’agglomération excède aussi vingt millions d’habitants, a vu disparaître 55 % des zones cultivées, 47 % des zones humides et 38 % du couvert végétal entre 1960 et 2005. Pendant que la superficie bâtie augmentait de 134 %.

Plus près de nous, le Grand Paris est le chantier d’aménagement le plus important de l’histoire de la capitale depuis le Second Empire (XIXe siècle), avec pas moins de deux cents kilomètres de lignes de métro supplémentaires, cent soixante kilomètres de tunnels à percer, soixante-huit gares à construire, quatre-vingt mille logements par an à sortir de terre.

En France d’ailleurs, la population urbaine a augmenté de 20 % entre 1960 et 2018, pour officiellement dépasser les 80 % de la population hexagonale en 2020, ramenés toutefois à 67 % en ne tenant plus uniquement compte de l’influence des villes mais aussi de la taille des peuplements (critère de densité des constructions). Près de la moitié vit dans l’une des vingt-deux grandes villes (dont quatre millionnaires en nombre d’habitants), à ce jour officiellement dénommées métropoles. Et, depuis ces centres métropolitains jusqu’aux couronnes périurbaines, comme dans un bon tiers des périmètres de villes moyennes et d’inter-communalités (elles-mêmes grossissantes par volontarisme réglementaire), l’urbanisation croît deux fois plus vite en surface qu’en population (et même trois fois dans les années 1990, soit annuellement la taille de Marseille, un département tous les dix ans, la Région Provence-Alpes-Côte d’Azur en cinquante ans).

La métropolisation du monde

Les foyers premiers ainsi que le modèle principal de cette croissance sont assurés par les grandes agglomérations, au premier chef les sept villes-monde (New York, Hongkong, Londres, Paris, Tokyo, Singapour et Séoul) et leurs épigones, cent vingt métropoles internationales. Elles représentent en cumul 12 % de la population mondiale pour 48 % du Produit Intérieur Brut (PIB) mondial. Il y a donc du capital à fixer et de la « richesse » à produire… À condition de continuer à grossir. Tokyo a déjà un PIB supérieur à celui du Canada, Paris à celui de la Suisse…

Engagée depuis une quarantaine d’années dans les pays occidentaux, la métropolisation représente le stade néolibéral de l’économie mondialisée : polarisation urbaine des nouvelles activités dites postindustrielles et conversion rapide des pouvoirs métropolitains aux logiques de firme marchande.

Elle incarne l’avantage acquis ces dernières décennies par les grandes villes : articulation des fonctions de commandement (ex : directions d’entreprises) et de communication (ex : aéroports, interconnexions ferroviaires, etc.), polarisation des marchés financiers (ex : places boursières et organismes bancaires), des marchés d’emplois de « haut niveau » – que l’Insee qualifie de métropolitains depuis 2002 (conception-recherche et prestations intellectuelles, commerce interentreprises et gestion managériale, culture et loisirs) ou encore de marchés segmentés de consommation (tourisme, art, technologies…).

[…]

Or, occupant seulement 2 % de la surface de la Terre, le fait urbain décrit produit 70 % des déchets, émet 75 % des émissions de gaz à effet de serre (GES), consomme 78 % de l’énergie et émet plus 90 % de l’ensemble des polluants émis dans l’air pour, souvenons-nous, 58 % de la population mondiale.

Pour les seuls GES, vingt-cinq des cent soixante-sept plus grandes villes du monde sont responsables de près de la moitié des émissions urbaines de CO2 – la fabrication du ciment représentant près de 10 % des émissions mondiales, en augmentation de 80 % en dix ans. À ce jour, 40 % de la population urbaine mondiale vit dans des villes où l’exposition à la chaleur extrême a triplé sur les trente-cinq dernières années.

Plusieurs mégapoles s’enfoncent annuellement de plusieurs centimètres sous le poids de la densité des matériaux de construction et du pompage des nappes phréatiques (Mexico, Téhéran, Nairobi, Djakarta…). La prévalence des maladies dites de civilisation est nettement plus importante dans les grandes villes, responsables de quarante et un millions de décès annuels à travers le monde (cancers, maladies cardiovasculaires et pulmonaires, diabète et obésité, troubles psychiques et maladies mentales).

Enfin, selon le Fonds monétaire international, à l’horizon de la fin du siècle, 74 % de la population mondiale (annoncée en 2100 urbaine à 80 %) vivra des canicules mortelles plus de vingt jours par an. Un point de comparaison : la canicule de 2003 en France, 15 000 morts, en dix-huit jours. D’ailleurs, en France, les pollutions atmosphériques des grandes villes sont responsables de 50 000 morts annuellement.

Le secteur du bâtiment-travaux publics (BTP), toutes constructions confondues (mais à 90 % dans les aires définies comme urbaines), représente 46 % de la consommation énergétique, 40 % de notre production de déchets et 25 % des émissions de GES. L’autonomie alimentaire des cent premières villes est de trois jours (98 % d’alimentation importée) et Paris, par tous ses hectares nécessaires, a une empreinte écologique trois cent treize fois plus lourde que sa propre superficie.

[…]

Si l’on croise les données de nos impacts écologiques avec celles des limites planétaires, on constate que l’empreinte moyenne de chaque Français va devoir être divisée par quatre à six pour prétendre à la neutralité carbone à horizon de 2050. Pour ce faire, loin du technosolutionnisme ambiant et du durabilisme du verdissement, l’autonomie, comprise comme autosubsistance et autogestion, est le seul moyen de se figurer l’ensemble de nos pressions et de les contenir par l’autodétermination des besoins, au plus près des ressources et de leurs écosystèmes. Ceci, sans pour autant négliger nos interdépendances sociales et quelques-unes de nos libertés.

Or pour faire autonomie, toute ville devrait produire 100 % de son énergie, qui plus est renouvelable (or, à ce jour, Lyon, Bordeaux ou Rennes n’en produisent par exemple que 7 % à 8 % , non renouvelables), remettre en pleine terre entre 50 % et 60 % des sols pour la production vivrière et le respect du cycle de l’eau (à ce jour, entre 1 % et 1,5 % dans les villes labellisées Métropoles françaises), ou encore restituer aux écosystèmes au moins 15 % des sols urbanisés pour la biodiversité. Tout ceci est infaisable morphologiquement et, quoi qu’il en soit, impensable dans le cadre d’une ville devenue médiation première du capital.

Nous n’avons en fait pas d’autre choix que de nous affranchir des grandes centralités et de leurs polarités, comme certains espaces périurbains commencent à le faire ; en déconcentrant et en relocalisant, en décentralisant, sans omettre de décoloniser quelques habitudes et modes de vie.

Mais comment passer de l’ère de taire l’inconséquence de nos écologies urbaines à l’âge du faire des géographies posturbaines, sans pour autant rétrécir la société par le jeu des identités et le retour de quelques barbelés ? Quelles sont les conditions d’une désurbanisation sans perte d’altérité, et sans oublier cette fois la communauté biotique ?

Bientôt, le débranchement urbain ?

Cette autre géographie est d’ores et déjà en construction, à bas bruit. Les espaces plus ouverts, ceux des campagnes, offrent d’autres possibilités, sous condition de révision de quelques comportements, particulièrement ceux liés à nos mobilités, connectivités et divertissements. En France, cela correspond au foisonnement d’alternatives au sein des espaces dessinés par les treize mille petites villes et petites villes de proximité, bourgs et villages centre, auxquels il faut ajouter les milliers d’autres villages, hameaux et lieux-dit : néoruralités qui connaissent leur septième vague d’installation, néopaysanneries dynamiques, zones à défendre, communautés existentielles/intentionnelles, écolieux et fermes sociales…

Permaculture et autosubsistance vivrière, chantiers participatifs et autoconstruction bioclimatique, épiceries sociales ambulantes et médiathèques villageoises itinérantes, fêtes locales et savoirs vernaculaires… sont clairement ici en ligne de mire. Et l’on pourrait imaginer des foires locales aux logements, puisque près de trois millions sont vacants dans les périphéries, alors que ce secteur est prétendument en crise. Et, toute cette effervescence ne concerne pas moins de 30 % du territoire hexagonal.

Là serait la raison du débranchement urbain : cesser d’être les agents involontaires des méga-machines urbaines en recouvrant de la puissance d’agir, non plus pour faire masse contre la nature mais pour faire corps avec le vivant. Le triptyque habiter la terre, coopérer par le faire, autogérer de manière solidaire peut constituer la matrice d’une société écologique posturbaine. À condition de vider les villes, les grandes, et de cheminer enfin vers le suffisant.

Température : pourquoi de nouveaux records ?

Température : pourquoi de nouveaux records ?

par
Cathy Clerbaux
Directrice de recherche au CNRS (LATMOS/IPSL), professeure invitée Université libre de Bruxelles, Sorbonne Université dans the Conversation


Les phénomènes météorologiques locaux sont difficiles à prévoir car ils fluctuent rapidement sous l’influence de processus non linéaires et chaotiques, tandis que l’évolution du climat global sur le plus long terme repose sur des phénomènes physiques bien connus qui sont généralement prévisibles. Les prochains 12-18 mois devraient être assez exceptionnels en termes de températures, suite à un alignement de phénomènes locaux et globaux qui se combinent.

Avec mon équipe dont la spécialité est l’étude par satellites de l’évolution de l’atmosphère, j’analyse chaque jour des millions de données vues du ciel pour surveiller les températures sur terre comme sur la mer, partout autour du globe terrestre, et pour mesurer les concentrations des gaz présents dans l’atmosphère. Ces dernières semaines à partir des cartes satellites, nous avons aussi pu observer les records de chaleur qui ont été battus dans de nombreux pays, comme rapportés par les agences météorologiques et les médias.

Un marqueur important a fait les gros titres : il s’agit de l’augmentation de la température moyenne globale de 1,5 °C par rapport à l’époque préindustrielle. Une valeur repère dans l’accord de Paris sur le climat, qui a été dépassée plusieurs jours cet été. Serait-il possible que cette valeur soit également dépassée quand il s’agira de calculer la moyenne annuelle des températures globales pour l’année 2023 ?

Pour comprendre l’évolution des températures, il faut tenir compte du fait que notre climat est complexe : il dépend des interactions entre les activités humaines, l’atmosphère, la surface terrestre et la végétation, la neige et la glace, et les océans. Le système climatique évolue sous l’influence de sa propre dynamique interne, mais dépend également de facteurs externes, qu’on appelle les « forçages radiatifs », et qui sont exprimés en watts par mètres carrés (W/m2).

Le terme forçage est utilisé pour indiquer que l’équilibre radiatif de la Terre est déstabilisé, et le terme radiatif est lui convoqué car ces facteurs modifient l’équilibre entre le rayonnement solaire entrant et le rayonnement infrarouge sortant de l’atmosphère. Cet équilibre radiatif contrôle la température à différentes altitudes. Un forçage positif implique une augmentation de la température à la surface de la Terre, et à l’inverse un forçage négatif implique une diminution.

Les forçages externes sont à la fois causés par des phénomènes naturels tels que les éruptions volcaniques et les variations du rayonnement solaire, mais également par des modifications de la composition atmosphérique imputables à l’homme (les gaz à effet de serre et les particules liés aux activités humaines). Comprendre les changements climatiques observés depuis une trentaine d’années implique de pouvoir distinguer les modifications liées aux activités humaines de celles associées aux variations naturelles du climat. Les principaux forçages qui vont intervenir et s’additionner sont :

Le forçage lié aux variations de l’activité solaire, qui entraîne des changements du rayonnement solaire qui atteint la Terre. Lorsque le Soleil est plus actif (maximum solaire), il émet davantage de rayonnement. Ce forçage est faible (de + à -0,3 W/m2) mais dure assez longtemps. Son cycle principal est d’environ 11 ans. Il trouve son origine dans les changements du champ magnétique solaire qui se caractérisent par des variations dans le nombre de taches solaires et d’autres phénomènes solaires.

Le forçage lié aux éruptions volcaniques, qui peut être très intense et est en général négatif de -1 à -5 W/m2, mais de courte durée (un à deux ans). Les éruptions volcaniques peuvent avoir un impact significatif sur le climat en raison de l’injection de grandes quantités de cendres, de gaz et de particules dans l’atmosphère.
Tous les volcans n’ont pas un impact sur le climat global, cela dépend de la taille et de la puissance de l’éruption, de l’altitude/de la latitude auxquelles les gaz et les cendres sont éjectés, ainsi que des conditions météorologiques locales. L’étude des éruptions volcaniques passées nous a appris que l’impact le plus significatif est associé à des éruptions proches de l’équateur qui injectent du SO2 haut dans l’atmosphère, par exemple le Mont Pinatubo (Philippines) en 1991. Ce gaz se transforme en gouttelettes d’acide sulfurique (H2SO4) qui constituent un écran pour la radiation solaire traversant l’atmosphère.

Le forçage lié à l’excès de gaz à effet de serre, en particulier le dioxyde de carbone (CO2), le méthane (CH4), le protoxyde d’azote (N2O) et les chlorofluorocarbures (CFC), qui sont transparents à la lumière solaire mais absorbent une partie du rayonnement thermique émis par la surface terrestre. Au fil du temps, les activités humaines, telles que la combustion de combustibles fossiles, la déforestation et l’agriculture, ont entraîné une augmentation significative des concentrations de gaz à effet de serre dans l’atmosphère. L’accumulation de ces gaz à effet de serre, qui absorbent davantage de rayonnement thermique émis par la Terre et piègent plus de chaleur dans l’atmosphère, entraîne un forçage radiatif positif, estimé à +3 W/m2. Il s’agit donc du forçage le plus important car il n’est pas transitoire comme celui associé aux volcans.

Le forçage négatif lié aux aérosols d’origine anthropique et naturelle. Les aérosols sont de petites particules en suspension dans l’atmosphère qui absorbent, diffusent ou réfléchissent la lumière solaire. Elles proviennent des écosystèmes (embruns marins, sables, poussières, cendres volcaniques, aérosols biogéniques) et d’activités humaines comme la combustion de fiouls fossiles, le brûlage de la biomasse et les feux de forêt, l’élevage des animaux et l’usage d’engrais. Toutes ces particules font écran à l’insolation mais cette fois dans les basses couches de l’atmosphère. Même si les incertitudes sur le total du forçage radiatif lié à la présence d’aérosols restent élevées, les estimations actuelles indiquent un forçage radiatif total négatif de -0,5 W/m2. Sans la pollution par les aérosols, la Terre serait donc encore plus chaude qu’elle ne l’est déjà !

En plus des forçages radiatifs, il faut aussi tenir compte de la variabilité naturelle du système couplé océan-atmosphère, et en particulier du phénomène ENSO (El Niño Southern Oscillation), avec sa composante chaude El Niño et sa composante froide La Niña. Ces phénomènes sont les principaux facteurs de variation d’une année sur l’autre, dont il faut tenir compte quand on analyse la tendance à long terme au réchauffement de la surface de la mer.

Ces événements climatiques périodiques sont des phénomènes naturels, qui se caractérisent par des fluctuations de température entre l’océan et l’atmosphère dans l’océan pacifique équatorial. En général, les vents alizés soufflent d’est en ouest le long de l’équateur, poussant les eaux chaudes de la surface de l’océan Pacifique vers l’ouest, où elles s’accumulent près de l’Indonésie et de l’Australie. L’eau froide remonte alors du fond de l’océan dans l’est du Pacifique, en remplaçant l’eau chaude, ce qui entraîne des eaux relativement fraîches à la surface des côtes sud-américaines.

Lorsque le phénomène El Niño survient, les alizés faiblissent ou s’inversent, ce qui réduit leur force ou les fait souffler d’ouest en est, ce qui permet à l’eau chaude accumulée dans l’ouest du Pacifique de se déplacer vers l’est en suivant l’équateur. Le réchauffement de la surface de la mer dans l’est du Pacifique provoque alors une augmentation de plusieurs degrés de la température de l’eau, avec de vastes répercussions sur les conditions météorologiques et climatiques à l’échelle mondiale.

Ces phénomènes peuvent durer plusieurs mois ou plusieurs années, et leur intensité est variable. Ils perturbent la météo localement (plus de pluies à certains endroits, plus de sécheresses à d’autres) et influencent le climat global, en particulier lors d’évènements El Niño intenses.

Quelles températures pour les prochains mois ?

Reprenons un à un les différents éléments décrits ci-dessus, et regardons ce qu’il en est en ce moment :

L’activité solaire approche de son maximum, du coup l’effet de réchauffement causé par une augmentation du rayonnement solaire est plus prononcé. Ceci conduit à une légère augmentation des températures moyennes, estimée à +0,1 °C.

Au niveau de l’activité volcanique, il s’est passé un évènement complètement exceptionnel : le volcan sous-marin Hunga Tonga qui a violemment érupté en janvier 2022 a envoyé environ 150 millions de tonnes (soit l’équivalent de 60 000 piscines olympiques…) de vapeur d’eau directement dans la stratosphère, qui s’est depuis répartie tout autour de la terre. Les simulations numériques montrent que ceci contribuera à réchauffer légèrement la surface terrestre (l’eau étant un puissant gaz à effet de serre), bien qu’il soit encore difficile de dire de combien et sur quelle durée.

Les gaz à effet de serre ont continué à s’accumuler, c’est le forçage radiatif qui domine tous les autres et conduirait déjà à une augmentation moyenne de +1,5 °C s’il n’y avait pas les aérosols pour tempérer un peu (-0,3 °C).

Température : toujours et encore de nouveaux records, pourquoi ?

Température : toujours et encore de nouveaux records, pourquoi ?

par
Cathy Clerbaux
Directrice de recherche au CNRS (LATMOS/IPSL), professeure invitée Université libre de Bruxelles, Sorbonne Université dans the Conversation


Les phénomènes météorologiques locaux sont difficiles à prévoir car ils fluctuent rapidement sous l’influence de processus non linéaires et chaotiques, tandis que l’évolution du climat global sur le plus long terme repose sur des phénomènes physiques bien connus qui sont généralement prévisibles. Les prochains 12-18 mois devraient être assez exceptionnels en termes de températures, suite à un alignement de phénomènes locaux et globaux qui se combinent.

Avec mon équipe dont la spécialité est l’étude par satellites de l’évolution de l’atmosphère, j’analyse chaque jour des millions de données vues du ciel pour surveiller les températures sur terre comme sur la mer, partout autour du globe terrestre, et pour mesurer les concentrations des gaz présents dans l’atmosphère. Ces dernières semaines à partir des cartes satellites, nous avons aussi pu observer les records de chaleur qui ont été battus dans de nombreux pays, comme rapportés par les agences météorologiques et les médias.

Un marqueur important a fait les gros titres : il s’agit de l’augmentation de la température moyenne globale de 1,5 °C par rapport à l’époque préindustrielle. Une valeur repère dans l’accord de Paris sur le climat, qui a été dépassée plusieurs jours cet été. Serait-il possible que cette valeur soit également dépassée quand il s’agira de calculer la moyenne annuelle des températures globales pour l’année 2023 ?

Pour comprendre l’évolution des températures, il faut tenir compte du fait que notre climat est complexe : il dépend des interactions entre les activités humaines, l’atmosphère, la surface terrestre et la végétation, la neige et la glace, et les océans. Le système climatique évolue sous l’influence de sa propre dynamique interne, mais dépend également de facteurs externes, qu’on appelle les « forçages radiatifs », et qui sont exprimés en watts par mètres carrés (W/m2).

Le terme forçage est utilisé pour indiquer que l’équilibre radiatif de la Terre est déstabilisé, et le terme radiatif est lui convoqué car ces facteurs modifient l’équilibre entre le rayonnement solaire entrant et le rayonnement infrarouge sortant de l’atmosphère. Cet équilibre radiatif contrôle la température à différentes altitudes. Un forçage positif implique une augmentation de la température à la surface de la Terre, et à l’inverse un forçage négatif implique une diminution.

Les forçages externes sont à la fois causés par des phénomènes naturels tels que les éruptions volcaniques et les variations du rayonnement solaire, mais également par des modifications de la composition atmosphérique imputables à l’homme (les gaz à effet de serre et les particules liés aux activités humaines). Comprendre les changements climatiques observés depuis une trentaine d’années implique de pouvoir distinguer les modifications liées aux activités humaines de celles associées aux variations naturelles du climat. Les principaux forçages qui vont intervenir et s’additionner sont :

Le forçage lié aux variations de l’activité solaire, qui entraîne des changements du rayonnement solaire qui atteint la Terre. Lorsque le Soleil est plus actif (maximum solaire), il émet davantage de rayonnement. Ce forçage est faible (de + à -0,3 W/m2) mais dure assez longtemps. Son cycle principal est d’environ 11 ans. Il trouve son origine dans les changements du champ magnétique solaire qui se caractérisent par des variations dans le nombre de taches solaires et d’autres phénomènes solaires.

Le forçage lié aux éruptions volcaniques, qui peut être très intense et est en général négatif de -1 à -5 W/m2, mais de courte durée (un à deux ans). Les éruptions volcaniques peuvent avoir un impact significatif sur le climat en raison de l’injection de grandes quantités de cendres, de gaz et de particules dans l’atmosphère.
Tous les volcans n’ont pas un impact sur le climat global, cela dépend de la taille et de la puissance de l’éruption, de l’altitude/de la latitude auxquelles les gaz et les cendres sont éjectés, ainsi que des conditions météorologiques locales. L’étude des éruptions volcaniques passées nous a appris que l’impact le plus significatif est associé à des éruptions proches de l’équateur qui injectent du SO2 haut dans l’atmosphère, par exemple le Mont Pinatubo (Philippines) en 1991. Ce gaz se transforme en gouttelettes d’acide sulfurique (H2SO4) qui constituent un écran pour la radiation solaire traversant l’atmosphère.

Le forçage lié à l’excès de gaz à effet de serre, en particulier le dioxyde de carbone (CO2), le méthane (CH4), le protoxyde d’azote (N2O) et les chlorofluorocarbures (CFC), qui sont transparents à la lumière solaire mais absorbent une partie du rayonnement thermique émis par la surface terrestre. Au fil du temps, les activités humaines, telles que la combustion de combustibles fossiles, la déforestation et l’agriculture, ont entraîné une augmentation significative des concentrations de gaz à effet de serre dans l’atmosphère. L’accumulation de ces gaz à effet de serre, qui absorbent davantage de rayonnement thermique émis par la Terre et piègent plus de chaleur dans l’atmosphère, entraîne un forçage radiatif positif, estimé à +3 W/m2. Il s’agit donc du forçage le plus important car il n’est pas transitoire comme celui associé aux volcans.

Le forçage négatif lié aux aérosols d’origine anthropique et naturelle. Les aérosols sont de petites particules en suspension dans l’atmosphère qui absorbent, diffusent ou réfléchissent la lumière solaire. Elles proviennent des écosystèmes (embruns marins, sables, poussières, cendres volcaniques, aérosols biogéniques) et d’activités humaines comme la combustion de fiouls fossiles, le brûlage de la biomasse et les feux de forêt, l’élevage des animaux et l’usage d’engrais. Toutes ces particules font écran à l’insolation mais cette fois dans les basses couches de l’atmosphère. Même si les incertitudes sur le total du forçage radiatif lié à la présence d’aérosols restent élevées, les estimations actuelles indiquent un forçage radiatif total négatif de -0,5 W/m2. Sans la pollution par les aérosols, la Terre serait donc encore plus chaude qu’elle ne l’est déjà !

En plus des forçages radiatifs, il faut aussi tenir compte de la variabilité naturelle du système couplé océan-atmosphère, et en particulier du phénomène ENSO (El Niño Southern Oscillation), avec sa composante chaude El Niño et sa composante froide La Niña. Ces phénomènes sont les principaux facteurs de variation d’une année sur l’autre, dont il faut tenir compte quand on analyse la tendance à long terme au réchauffement de la surface de la mer.

Ces événements climatiques périodiques sont des phénomènes naturels, qui se caractérisent par des fluctuations de température entre l’océan et l’atmosphère dans l’océan pacifique équatorial. En général, les vents alizés soufflent d’est en ouest le long de l’équateur, poussant les eaux chaudes de la surface de l’océan Pacifique vers l’ouest, où elles s’accumulent près de l’Indonésie et de l’Australie. L’eau froide remonte alors du fond de l’océan dans l’est du Pacifique, en remplaçant l’eau chaude, ce qui entraîne des eaux relativement fraîches à la surface des côtes sud-américaines.

Lorsque le phénomène El Niño survient, les alizés faiblissent ou s’inversent, ce qui réduit leur force ou les fait souffler d’ouest en est, ce qui permet à l’eau chaude accumulée dans l’ouest du Pacifique de se déplacer vers l’est en suivant l’équateur. Le réchauffement de la surface de la mer dans l’est du Pacifique provoque alors une augmentation de plusieurs degrés de la température de l’eau, avec de vastes répercussions sur les conditions météorologiques et climatiques à l’échelle mondiale.

Ces phénomènes peuvent durer plusieurs mois ou plusieurs années, et leur intensité est variable. Ils perturbent la météo localement (plus de pluies à certains endroits, plus de sécheresses à d’autres) et influencent le climat global, en particulier lors d’évènements El Niño intenses.

Quelles températures pour les prochains mois ?

Reprenons un à un les différents éléments décrits ci-dessus, et regardons ce qu’il en est en ce moment :

L’activité solaire approche de son maximum, du coup l’effet de réchauffement causé par une augmentation du rayonnement solaire est plus prononcé. Ceci conduit à une légère augmentation des températures moyennes, estimée à +0,1 °C.

Au niveau de l’activité volcanique, il s’est passé un évènement complètement exceptionnel : le volcan sous-marin Hunga Tonga qui a violemment érupté en janvier 2022 a envoyé environ 150 millions de tonnes (soit l’équivalent de 60 000 piscines olympiques…) de vapeur d’eau directement dans la stratosphère, qui s’est depuis répartie tout autour de la terre. Les simulations numériques montrent que ceci contribuera à réchauffer légèrement la surface terrestre (l’eau étant un puissant gaz à effet de serre), bien qu’il soit encore difficile de dire de combien et sur quelle durée.

Les gaz à effet de serre ont continué à s’accumuler, c’est le forçage radiatif qui domine tous les autres et conduirait déjà à une augmentation moyenne de +1,5 °C s’il n’y avait pas les aérosols pour tempérer un peu (-0,3 °C).

Environnement: Pourquoi fuir les villes

Environnement: Pourquoi fuir les villes

par
Guillaume Faburel
Professeur, chercheur à l’UMR Triangle, Université Lumière Lyon 2 dans The Conversation

Notons par ailleurs que cet extrait ne traite pas des questions d’insécurité ou encore de bruit. NDLR

Vider les villes ? Voilà bien a priori une hérésie. La ville, c’est le progrès et l’émancipation. Tous les grands moments de notre civilisation y sont chevillés, des cités-États aux villes-monde et métropoles d’aujourd’hui. Pourquoi diable vouloir les vider ? Simplement parce que tous les mois à travers le monde l’équivalent d’une ville comme New York sort de terre. À moins de croire dans le solutionnisme technologique et le durabilisme des transitions, il est temps de rouvrir une option envisagée dès les années 1970 : la désurbanisation de nos sociétés. Voici peut-être l’unique solution face à la dévastation écologique. Un seul « s » sépare demeure et démesure, celui de notre propre survie. Aujourd’hui, 58 % de la population mondiale est urbaine, soit près de 4,4 milliards d’habitants (dont presque 40 % résidant aux États-Unis, en Europe et en Chine), contre 751 millions en 1950. Cette proportion est même annoncée à 70 % en 2050 par l’Organisation des Nations unies (ONU).

[…]

Avec plus de vingt millions d’habitants, Mumbaï a vu sa superficie bâtie presque doubler entre 1991 et 2018, perdant ainsi 40 % de son couvert végétal. Dhaka, dont la population de l’agglomération excède aussi vingt millions d’habitants, a vu disparaître 55 % des zones cultivées, 47 % des zones humides et 38 % du couvert végétal entre 1960 et 2005. Pendant que la superficie bâtie augmentait de 134 %.

Plus près de nous, le Grand Paris est le chantier d’aménagement le plus important de l’histoire de la capitale depuis le Second Empire (XIXe siècle), avec pas moins de deux cents kilomètres de lignes de métro supplémentaires, cent soixante kilomètres de tunnels à percer, soixante-huit gares à construire, quatre-vingt mille logements par an à sortir de terre.

En France d’ailleurs, la population urbaine a augmenté de 20 % entre 1960 et 2018, pour officiellement dépasser les 80 % de la population hexagonale en 2020, ramenés toutefois à 67 % en ne tenant plus uniquement compte de l’influence des villes mais aussi de la taille des peuplements (critère de densité des constructions). Près de la moitié vit dans l’une des vingt-deux grandes villes (dont quatre millionnaires en nombre d’habitants), à ce jour officiellement dénommées métropoles. Et, depuis ces centres métropolitains jusqu’aux couronnes périurbaines, comme dans un bon tiers des périmètres de villes moyennes et d’inter-communalités (elles-mêmes grossissantes par volontarisme réglementaire), l’urbanisation croît deux fois plus vite en surface qu’en population (et même trois fois dans les années 1990, soit annuellement la taille de Marseille, un département tous les dix ans, la Région Provence-Alpes-Côte d’Azur en cinquante ans).

La métropolisation du monde

Les foyers premiers ainsi que le modèle principal de cette croissance sont assurés par les grandes agglomérations, au premier chef les sept villes-monde (New York, Hongkong, Londres, Paris, Tokyo, Singapour et Séoul) et leurs épigones, cent vingt métropoles internationales. Elles représentent en cumul 12 % de la population mondiale pour 48 % du Produit Intérieur Brut (PIB) mondial. Il y a donc du capital à fixer et de la « richesse » à produire… À condition de continuer à grossir. Tokyo a déjà un PIB supérieur à celui du Canada, Paris à celui de la Suisse…

Engagée depuis une quarantaine d’années dans les pays occidentaux, la métropolisation représente le stade néolibéral de l’économie mondialisée : polarisation urbaine des nouvelles activités dites postindustrielles et conversion rapide des pouvoirs métropolitains aux logiques de firme marchande.

Elle incarne l’avantage acquis ces dernières décennies par les grandes villes : articulation des fonctions de commandement (ex : directions d’entreprises) et de communication (ex : aéroports, interconnexions ferroviaires, etc.), polarisation des marchés financiers (ex : places boursières et organismes bancaires), des marchés d’emplois de « haut niveau » – que l’Insee qualifie de métropolitains depuis 2002 (conception-recherche et prestations intellectuelles, commerce interentreprises et gestion managériale, culture et loisirs) ou encore de marchés segmentés de consommation (tourisme, art, technologies…).

[…]

Or, occupant seulement 2 % de la surface de la Terre, le fait urbain décrit produit 70 % des déchets, émet 75 % des émissions de gaz à effet de serre (GES), consomme 78 % de l’énergie et émet plus 90 % de l’ensemble des polluants émis dans l’air pour, souvenons-nous, 58 % de la population mondiale.

Pour les seuls GES, vingt-cinq des cent soixante-sept plus grandes villes du monde sont responsables de près de la moitié des émissions urbaines de CO2 – la fabrication du ciment représentant près de 10 % des émissions mondiales, en augmentation de 80 % en dix ans. À ce jour, 40 % de la population urbaine mondiale vit dans des villes où l’exposition à la chaleur extrême a triplé sur les trente-cinq dernières années.

Plusieurs mégapoles s’enfoncent annuellement de plusieurs centimètres sous le poids de la densité des matériaux de construction et du pompage des nappes phréatiques (Mexico, Téhéran, Nairobi, Djakarta…). La prévalence des maladies dites de civilisation est nettement plus importante dans les grandes villes, responsables de quarante et un millions de décès annuels à travers le monde (cancers, maladies cardiovasculaires et pulmonaires, diabète et obésité, troubles psychiques et maladies mentales).

Enfin, selon le Fonds monétaire international, à l’horizon de la fin du siècle, 74 % de la population mondiale (annoncée en 2100 urbaine à 80 %) vivra des canicules mortelles plus de vingt jours par an. Un point de comparaison : la canicule de 2003 en France, 15 000 morts, en dix-huit jours. D’ailleurs, en France, les pollutions atmosphériques des grandes villes sont responsables de 50 000 morts annuellement.

Le secteur du bâtiment-travaux publics (BTP), toutes constructions confondues (mais à 90 % dans les aires définies comme urbaines), représente 46 % de la consommation énergétique, 40 % de notre production de déchets et 25 % des émissions de GES. L’autonomie alimentaire des cent premières villes est de trois jours (98 % d’alimentation importée) et Paris, par tous ses hectares nécessaires, a une empreinte écologique trois cent treize fois plus lourde que sa propre superficie.

[…]

Si l’on croise les données de nos impacts écologiques avec celles des limites planétaires, on constate que l’empreinte moyenne de chaque Français va devoir être divisée par quatre à six pour prétendre à la neutralité carbone à horizon de 2050. Pour ce faire, loin du technosolutionnisme ambiant et du durabilisme du verdissement, l’autonomie, comprise comme autosubsistance et autogestion, est le seul moyen de se figurer l’ensemble de nos pressions et de les contenir par l’autodétermination des besoins, au plus près des ressources et de leurs écosystèmes. Ceci, sans pour autant négliger nos interdépendances sociales et quelques-unes de nos libertés.

Or pour faire autonomie, toute ville devrait produire 100 % de son énergie, qui plus est renouvelable (or, à ce jour, Lyon, Bordeaux ou Rennes n’en produisent par exemple que 7 % à 8 % , non renouvelables), remettre en pleine terre entre 50 % et 60 % des sols pour la production vivrière et le respect du cycle de l’eau (à ce jour, entre 1 % et 1,5 % dans les villes labellisées Métropoles françaises), ou encore restituer aux écosystèmes au moins 15 % des sols urbanisés pour la biodiversité. Tout ceci est infaisable morphologiquement et, quoi qu’il en soit, impensable dans le cadre d’une ville devenue médiation première du capital.

Nous n’avons en fait pas d’autre choix que de nous affranchir des grandes centralités et de leurs polarités, comme certains espaces périurbains commencent à le faire ; en déconcentrant et en relocalisant, en décentralisant, sans omettre de décoloniser quelques habitudes et modes de vie.

Mais comment passer de l’ère de taire l’inconséquence de nos écologies urbaines à l’âge du faire des géographies posturbaines, sans pour autant rétrécir la société par le jeu des identités et le retour de quelques barbelés ? Quelles sont les conditions d’une désurbanisation sans perte d’altérité, et sans oublier cette fois la communauté biotique ?

Bientôt, le débranchement urbain ?

Cette autre géographie est d’ores et déjà en construction, à bas bruit. Les espaces plus ouverts, ceux des campagnes, offrent d’autres possibilités, sous condition de révision de quelques comportements, particulièrement ceux liés à nos mobilités, connectivités et divertissements. En France, cela correspond au foisonnement d’alternatives au sein des espaces dessinés par les treize mille petites villes et petites villes de proximité, bourgs et villages centre, auxquels il faut ajouter les milliers d’autres villages, hameaux et lieux-dit : néoruralités qui connaissent leur septième vague d’installation, néopaysanneries dynamiques, zones à défendre, communautés existentielles/intentionnelles, écolieux et fermes sociales…

Permaculture et autosubsistance vivrière, chantiers participatifs et autoconstruction bioclimatique, épiceries sociales ambulantes et médiathèques villageoises itinérantes, fêtes locales et savoirs vernaculaires… sont clairement ici en ligne de mire. Et l’on pourrait imaginer des foires locales aux logements, puisque près de trois millions sont vacants dans les périphéries, alors que ce secteur est prétendument en crise. Et, toute cette effervescence ne concerne pas moins de 30 % du territoire hexagonal.

Là serait la raison du débranchement urbain : cesser d’être les agents involontaires des méga-machines urbaines en recouvrant de la puissance d’agir, non plus pour faire masse contre la nature mais pour faire corps avec le vivant. Le triptyque habiter la terre, coopérer par le faire, autogérer de manière solidaire peut constituer la matrice d’une société écologique posturbaine. À condition de vider les villes, les grandes, et de cheminer enfin vers le suffisant.

Hausses de température : pourquoi s’attendre à de nouveaux records

Hausses de température : pourquoi s’attendre à de nouveaux records

par
Cathy Clerbaux
Directrice de recherche au CNRS (LATMOS/IPSL), professeure invitée Université libre de Bruxelles, Sorbonne Université dans the Conversation


Les phénomènes météorologiques locaux sont difficiles à prévoir car ils fluctuent rapidement sous l’influence de processus non linéaires et chaotiques, tandis que l’évolution du climat global sur le plus long terme repose sur des phénomènes physiques bien connus qui sont généralement prévisibles. Les prochains 12-18 mois devraient être assez exceptionnels en termes de températures, suite à un alignement de phénomènes locaux et globaux qui se combinent.

Avec mon équipe dont la spécialité est l’étude par satellites de l’évolution de l’atmosphère, j’analyse chaque jour des millions de données vues du ciel pour surveiller les températures sur terre comme sur la mer, partout autour du globe terrestre, et pour mesurer les concentrations des gaz présents dans l’atmosphère. Ces dernières semaines à partir des cartes satellites, nous avons aussi pu observer les records de chaleur qui ont été battus dans de nombreux pays, comme rapportés par les agences météorologiques et les médias.

Un marqueur important a fait les gros titres : il s’agit de l’augmentation de la température moyenne globale de 1,5 °C par rapport à l’époque préindustrielle. Une valeur repère dans l’accord de Paris sur le climat, qui a été dépassée plusieurs jours cet été. Serait-il possible que cette valeur soit également dépassée quand il s’agira de calculer la moyenne annuelle des températures globales pour l’année 2023 ?

Pour comprendre l’évolution des températures, il faut tenir compte du fait que notre climat est complexe : il dépend des interactions entre les activités humaines, l’atmosphère, la surface terrestre et la végétation, la neige et la glace, et les océans. Le système climatique évolue sous l’influence de sa propre dynamique interne, mais dépend également de facteurs externes, qu’on appelle les « forçages radiatifs », et qui sont exprimés en watts par mètres carrés (W/m2).

Le terme forçage est utilisé pour indiquer que l’équilibre radiatif de la Terre est déstabilisé, et le terme radiatif est lui convoqué car ces facteurs modifient l’équilibre entre le rayonnement solaire entrant et le rayonnement infrarouge sortant de l’atmosphère. Cet équilibre radiatif contrôle la température à différentes altitudes. Un forçage positif implique une augmentation de la température à la surface de la Terre, et à l’inverse un forçage négatif implique une diminution.

Les forçages externes sont à la fois causés par des phénomènes naturels tels que les éruptions volcaniques et les variations du rayonnement solaire, mais également par des modifications de la composition atmosphérique imputables à l’homme (les gaz à effet de serre et les particules liés aux activités humaines). Comprendre les changements climatiques observés depuis une trentaine d’années implique de pouvoir distinguer les modifications liées aux activités humaines de celles associées aux variations naturelles du climat. Les principaux forçages qui vont intervenir et s’additionner sont :

Le forçage lié aux variations de l’activité solaire, qui entraîne des changements du rayonnement solaire qui atteint la Terre. Lorsque le Soleil est plus actif (maximum solaire), il émet davantage de rayonnement. Ce forçage est faible (de + à -0,3 W/m2) mais dure assez longtemps. Son cycle principal est d’environ 11 ans. Il trouve son origine dans les changements du champ magnétique solaire qui se caractérisent par des variations dans le nombre de taches solaires et d’autres phénomènes solaires.

Le forçage lié aux éruptions volcaniques, qui peut être très intense et est en général négatif de -1 à -5 W/m2, mais de courte durée (un à deux ans). Les éruptions volcaniques peuvent avoir un impact significatif sur le climat en raison de l’injection de grandes quantités de cendres, de gaz et de particules dans l’atmosphère.
Tous les volcans n’ont pas un impact sur le climat global, cela dépend de la taille et de la puissance de l’éruption, de l’altitude/de la latitude auxquelles les gaz et les cendres sont éjectés, ainsi que des conditions météorologiques locales. L’étude des éruptions volcaniques passées nous a appris que l’impact le plus significatif est associé à des éruptions proches de l’équateur qui injectent du SO2 haut dans l’atmosphère, par exemple le Mont Pinatubo (Philippines) en 1991. Ce gaz se transforme en gouttelettes d’acide sulfurique (H2SO4) qui constituent un écran pour la radiation solaire traversant l’atmosphère.

Le forçage lié à l’excès de gaz à effet de serre, en particulier le dioxyde de carbone (CO2), le méthane (CH4), le protoxyde d’azote (N2O) et les chlorofluorocarbures (CFC), qui sont transparents à la lumière solaire mais absorbent une partie du rayonnement thermique émis par la surface terrestre. Au fil du temps, les activités humaines, telles que la combustion de combustibles fossiles, la déforestation et l’agriculture, ont entraîné une augmentation significative des concentrations de gaz à effet de serre dans l’atmosphère. L’accumulation de ces gaz à effet de serre, qui absorbent davantage de rayonnement thermique émis par la Terre et piègent plus de chaleur dans l’atmosphère, entraîne un forçage radiatif positif, estimé à +3 W/m2. Il s’agit donc du forçage le plus important car il n’est pas transitoire comme celui associé aux volcans.

Le forçage négatif lié aux aérosols d’origine anthropique et naturelle. Les aérosols sont de petites particules en suspension dans l’atmosphère qui absorbent, diffusent ou réfléchissent la lumière solaire. Elles proviennent des écosystèmes (embruns marins, sables, poussières, cendres volcaniques, aérosols biogéniques) et d’activités humaines comme la combustion de fiouls fossiles, le brûlage de la biomasse et les feux de forêt, l’élevage des animaux et l’usage d’engrais. Toutes ces particules font écran à l’insolation mais cette fois dans les basses couches de l’atmosphère. Même si les incertitudes sur le total du forçage radiatif lié à la présence d’aérosols restent élevées, les estimations actuelles indiquent un forçage radiatif total négatif de -0,5 W/m2. Sans la pollution par les aérosols, la Terre serait donc encore plus chaude qu’elle ne l’est déjà !

En plus des forçages radiatifs, il faut aussi tenir compte de la variabilité naturelle du système couplé océan-atmosphère, et en particulier du phénomène ENSO (El Niño Southern Oscillation), avec sa composante chaude El Niño et sa composante froide La Niña. Ces phénomènes sont les principaux facteurs de variation d’une année sur l’autre, dont il faut tenir compte quand on analyse la tendance à long terme au réchauffement de la surface de la mer.

Ces événements climatiques périodiques sont des phénomènes naturels, qui se caractérisent par des fluctuations de température entre l’océan et l’atmosphère dans l’océan pacifique équatorial. En général, les vents alizés soufflent d’est en ouest le long de l’équateur, poussant les eaux chaudes de la surface de l’océan Pacifique vers l’ouest, où elles s’accumulent près de l’Indonésie et de l’Australie. L’eau froide remonte alors du fond de l’océan dans l’est du Pacifique, en remplaçant l’eau chaude, ce qui entraîne des eaux relativement fraîches à la surface des côtes sud-américaines.

Lorsque le phénomène El Niño survient, les alizés faiblissent ou s’inversent, ce qui réduit leur force ou les fait souffler d’ouest en est, ce qui permet à l’eau chaude accumulée dans l’ouest du Pacifique de se déplacer vers l’est en suivant l’équateur. Le réchauffement de la surface de la mer dans l’est du Pacifique provoque alors une augmentation de plusieurs degrés de la température de l’eau, avec de vastes répercussions sur les conditions météorologiques et climatiques à l’échelle mondiale.

Ces phénomènes peuvent durer plusieurs mois ou plusieurs années, et leur intensité est variable. Ils perturbent la météo localement (plus de pluies à certains endroits, plus de sécheresses à d’autres) et influencent le climat global, en particulier lors d’évènements El Niño intenses.

Quelles températures pour les prochains mois ?

Reprenons un à un les différents éléments décrits ci-dessus, et regardons ce qu’il en est en ce moment :

L’activité solaire approche de son maximum, du coup l’effet de réchauffement causé par une augmentation du rayonnement solaire est plus prononcé. Ceci conduit à une légère augmentation des températures moyennes, estimée à +0,1 °C.

Au niveau de l’activité volcanique, il s’est passé un évènement complètement exceptionnel : le volcan sous-marin Hunga Tonga qui a violemment érupté en janvier 2022 a envoyé environ 150 millions de tonnes (soit l’équivalent de 60 000 piscines olympiques…) de vapeur d’eau directement dans la stratosphère, qui s’est depuis répartie tout autour de la terre. Les simulations numériques montrent que ceci contribuera à réchauffer légèrement la surface terrestre (l’eau étant un puissant gaz à effet de serre), bien qu’il soit encore difficile de dire de combien et sur quelle durée.

Les gaz à effet de serre ont continué à s’accumuler, c’est le forçage radiatif qui domine tous les autres et conduirait déjà à une augmentation moyenne de +1,5 °C s’il n’y avait pas les aérosols pour tempérer un peu (-0,3 °C).

Depuis quelques années le contenu total en aérosol a tendance à diminuer, principalement car les véhicules polluent moins (ce qui est une bonne nouvelle !), c’est particulièrement le cas en Chine, en Europe de l’Ouest et aux États-Unis. Cette année, on observe aussi un moindre transport du sable du Sahara sur l’océan, qui d’habitude fait écran à la radiation solaire, ce qui explique en partie les températures élevées mesurées dans l’atlantique nord au début de l’été.

Après trois années en régime La Niña un évènement El Niño est en train de s’installer. À ce stade on ne sait pas encore s’il sera intense (comme en 2015-2017) ou modéré, et combien de temps il durera, mais on prévoit que les températures océaniques devraient être plus élevées pendant les 12-18 prochains mois par rapport aux trois années précédentes.

Tous les paramètres réunis pour des records de chaleur

En conclusion, tous les paramètres sont réunis pour que nous battions des records de températures au cours des prochains 12-18 mois. Du coup, les 1,5 °C en moyenne globale, soit la limite la plus ambitieuse de l’accord de Paris sur le climat, pourrait être dépassés sans attendre 2030, avec les incidences sur les systèmes naturels et humains bien documentées dans le rapport spécial du GIEC 2019.

Une augmentation de 1,5 °C ne semble pas énorme, mais il faut se souvenir que 70 % de notre planète est couverte d’eau, qui a une inertie thermique supérieure à la terre et se réchauffe moins vite. De plus, le réchauffement est inégalement réparti et les hautes latitudes se réchauffent beaucoup plus vite que les tropiques, avec des pics de 4° attendus sur ces régions.

Est-on sûr que cela va se passer ? Non, mais la probabilité qu’on dépasse dès maintenant un seuil qu’on pensait atteindre entre 2025 et 2040 est importante. Comme les émissions de gaz à effet de serre ne diminuent pas, il faudrait que des phénomènes naturels soient à l’œuvre au cours des prochains mois pour contrecarrer la tendance prévue.

Par exemple si le phénomène El Niño s’avère moins puissant qu’envisagé, ou si un autre volcan envoyait du SO2 massivement dans toute l’atmosphère, alors seulement dans ce cas de figure les records de températures pourraient ne pas être battus dès maintenant.

Température : pourquoi s’attendre à de nouveaux records

Température : pourquoi s’attendre à de nouveaux records

par
Cathy Clerbaux
Directrice de recherche au CNRS (LATMOS/IPSL), professeure invitée Université libre de Bruxelles, Sorbonne Université dans the Conversation


Les phénomènes météorologiques locaux sont difficiles à prévoir car ils fluctuent rapidement sous l’influence de processus non linéaires et chaotiques, tandis que l’évolution du climat global sur le plus long terme repose sur des phénomènes physiques bien connus qui sont généralement prévisibles. Les prochains 12-18 mois devraient être assez exceptionnels en termes de températures, suite à un alignement de phénomènes locaux et globaux qui se combinent.

Avec mon équipe dont la spécialité est l’étude par satellites de l’évolution de l’atmosphère, j’analyse chaque jour des millions de données vues du ciel pour surveiller les températures sur terre comme sur la mer, partout autour du globe terrestre, et pour mesurer les concentrations des gaz présents dans l’atmosphère. Ces dernières semaines à partir des cartes satellites, nous avons aussi pu observer les records de chaleur qui ont été battus dans de nombreux pays, comme rapportés par les agences météorologiques et les médias.

Un marqueur important a fait les gros titres : il s’agit de l’augmentation de la température moyenne globale de 1,5 °C par rapport à l’époque préindustrielle. Une valeur repère dans l’accord de Paris sur le climat, qui a été dépassée plusieurs jours cet été. Serait-il possible que cette valeur soit également dépassée quand il s’agira de calculer la moyenne annuelle des températures globales pour l’année 2023 ?

Pour comprendre l’évolution des températures, il faut tenir compte du fait que notre climat est complexe : il dépend des interactions entre les activités humaines, l’atmosphère, la surface terrestre et la végétation, la neige et la glace, et les océans. Le système climatique évolue sous l’influence de sa propre dynamique interne, mais dépend également de facteurs externes, qu’on appelle les « forçages radiatifs », et qui sont exprimés en watts par mètres carrés (W/m2).

Le terme forçage est utilisé pour indiquer que l’équilibre radiatif de la Terre est déstabilisé, et le terme radiatif est lui convoqué car ces facteurs modifient l’équilibre entre le rayonnement solaire entrant et le rayonnement infrarouge sortant de l’atmosphère. Cet équilibre radiatif contrôle la température à différentes altitudes. Un forçage positif implique une augmentation de la température à la surface de la Terre, et à l’inverse un forçage négatif implique une diminution.

Les forçages externes sont à la fois causés par des phénomènes naturels tels que les éruptions volcaniques et les variations du rayonnement solaire, mais également par des modifications de la composition atmosphérique imputables à l’homme (les gaz à effet de serre et les particules liés aux activités humaines). Comprendre les changements climatiques observés depuis une trentaine d’années implique de pouvoir distinguer les modifications liées aux activités humaines de celles associées aux variations naturelles du climat. Les principaux forçages qui vont intervenir et s’additionner sont :

Le forçage lié aux variations de l’activité solaire, qui entraîne des changements du rayonnement solaire qui atteint la Terre. Lorsque le Soleil est plus actif (maximum solaire), il émet davantage de rayonnement. Ce forçage est faible (de + à -0,3 W/m2) mais dure assez longtemps. Son cycle principal est d’environ 11 ans. Il trouve son origine dans les changements du champ magnétique solaire qui se caractérisent par des variations dans le nombre de taches solaires et d’autres phénomènes solaires.

Le forçage lié aux éruptions volcaniques, qui peut être très intense et est en général négatif de -1 à -5 W/m2, mais de courte durée (un à deux ans). Les éruptions volcaniques peuvent avoir un impact significatif sur le climat en raison de l’injection de grandes quantités de cendres, de gaz et de particules dans l’atmosphère.
Tous les volcans n’ont pas un impact sur le climat global, cela dépend de la taille et de la puissance de l’éruption, de l’altitude/de la latitude auxquelles les gaz et les cendres sont éjectés, ainsi que des conditions météorologiques locales. L’étude des éruptions volcaniques passées nous a appris que l’impact le plus significatif est associé à des éruptions proches de l’équateur qui injectent du SO2 haut dans l’atmosphère, par exemple le Mont Pinatubo (Philippines) en 1991. Ce gaz se transforme en gouttelettes d’acide sulfurique (H2SO4) qui constituent un écran pour la radiation solaire traversant l’atmosphère.

Le forçage lié à l’excès de gaz à effet de serre, en particulier le dioxyde de carbone (CO2), le méthane (CH4), le protoxyde d’azote (N2O) et les chlorofluorocarbures (CFC), qui sont transparents à la lumière solaire mais absorbent une partie du rayonnement thermique émis par la surface terrestre. Au fil du temps, les activités humaines, telles que la combustion de combustibles fossiles, la déforestation et l’agriculture, ont entraîné une augmentation significative des concentrations de gaz à effet de serre dans l’atmosphère. L’accumulation de ces gaz à effet de serre, qui absorbent davantage de rayonnement thermique émis par la Terre et piègent plus de chaleur dans l’atmosphère, entraîne un forçage radiatif positif, estimé à +3 W/m2. Il s’agit donc du forçage le plus important car il n’est pas transitoire comme celui associé aux volcans.

Le forçage négatif lié aux aérosols d’origine anthropique et naturelle. Les aérosols sont de petites particules en suspension dans l’atmosphère qui absorbent, diffusent ou réfléchissent la lumière solaire. Elles proviennent des écosystèmes (embruns marins, sables, poussières, cendres volcaniques, aérosols biogéniques) et d’activités humaines comme la combustion de fiouls fossiles, le brûlage de la biomasse et les feux de forêt, l’élevage des animaux et l’usage d’engrais. Toutes ces particules font écran à l’insolation mais cette fois dans les basses couches de l’atmosphère. Même si les incertitudes sur le total du forçage radiatif lié à la présence d’aérosols restent élevées, les estimations actuelles indiquent un forçage radiatif total négatif de -0,5 W/m2. Sans la pollution par les aérosols, la Terre serait donc encore plus chaude qu’elle ne l’est déjà !

En plus des forçages radiatifs, il faut aussi tenir compte de la variabilité naturelle du système couplé océan-atmosphère, et en particulier du phénomène ENSO (El Niño Southern Oscillation), avec sa composante chaude El Niño et sa composante froide La Niña. Ces phénomènes sont les principaux facteurs de variation d’une année sur l’autre, dont il faut tenir compte quand on analyse la tendance à long terme au réchauffement de la surface de la mer.

Ces événements climatiques périodiques sont des phénomènes naturels, qui se caractérisent par des fluctuations de température entre l’océan et l’atmosphère dans l’océan pacifique équatorial. En général, les vents alizés soufflent d’est en ouest le long de l’équateur, poussant les eaux chaudes de la surface de l’océan Pacifique vers l’ouest, où elles s’accumulent près de l’Indonésie et de l’Australie. L’eau froide remonte alors du fond de l’océan dans l’est du Pacifique, en remplaçant l’eau chaude, ce qui entraîne des eaux relativement fraîches à la surface des côtes sud-américaines.

Lorsque le phénomène El Niño survient, les alizés faiblissent ou s’inversent, ce qui réduit leur force ou les fait souffler d’ouest en est, ce qui permet à l’eau chaude accumulée dans l’ouest du Pacifique de se déplacer vers l’est en suivant l’équateur. Le réchauffement de la surface de la mer dans l’est du Pacifique provoque alors une augmentation de plusieurs degrés de la température de l’eau, avec de vastes répercussions sur les conditions météorologiques et climatiques à l’échelle mondiale.

Ces phénomènes peuvent durer plusieurs mois ou plusieurs années, et leur intensité est variable. Ils perturbent la météo localement (plus de pluies à certains endroits, plus de sécheresses à d’autres) et influencent le climat global, en particulier lors d’évènements El Niño intenses.

Quelles températures pour les prochains mois ?

Reprenons un à un les différents éléments décrits ci-dessus, et regardons ce qu’il en est en ce moment :

L’activité solaire approche de son maximum, du coup l’effet de réchauffement causé par une augmentation du rayonnement solaire est plus prononcé. Ceci conduit à une légère augmentation des températures moyennes, estimée à +0,1 °C.

Au niveau de l’activité volcanique, il s’est passé un évènement complètement exceptionnel : le volcan sous-marin Hunga Tonga qui a violemment érupté en janvier 2022 a envoyé environ 150 millions de tonnes (soit l’équivalent de 60 000 piscines olympiques…) de vapeur d’eau directement dans la stratosphère, qui s’est depuis répartie tout autour de la terre. Les simulations numériques montrent que ceci contribuera à réchauffer légèrement la surface terrestre (l’eau étant un puissant gaz à effet de serre), bien qu’il soit encore difficile de dire de combien et sur quelle durée.

Les gaz à effet de serre ont continué à s’accumuler, c’est le forçage radiatif qui domine tous les autres et conduirait déjà à une augmentation moyenne de +1,5 °C s’il n’y avait pas les aérosols pour tempérer un peu (-0,3 °C).

Depuis quelques années le contenu total en aérosol a tendance à diminuer, principalement car les véhicules polluent moins (ce qui est une bonne nouvelle !), c’est particulièrement le cas en Chine, en Europe de l’Ouest et aux États-Unis. Cette année, on observe aussi un moindre transport du sable du Sahara sur l’océan, qui d’habitude fait écran à la radiation solaire, ce qui explique en partie les températures élevées mesurées dans l’atlantique nord au début de l’été.

Après trois années en régime La Niña un évènement El Niño est en train de s’installer. À ce stade on ne sait pas encore s’il sera intense (comme en 2015-2017) ou modéré, et combien de temps il durera, mais on prévoit que les températures océaniques devraient être plus élevées pendant les 12-18 prochains mois par rapport aux trois années précédentes.

Tous les paramètres réunis pour des records de chaleur

En conclusion, tous les paramètres sont réunis pour que nous battions des records de températures au cours des prochains 12-18 mois. Du coup, les 1,5 °C en moyenne globale, soit la limite la plus ambitieuse de l’accord de Paris sur le climat, pourrait être dépassés sans attendre 2030, avec les incidences sur les systèmes naturels et humains bien documentées dans le rapport spécial du GIEC 2019.

Une augmentation de 1,5 °C ne semble pas énorme, mais il faut se souvenir que 70 % de notre planète est couverte d’eau, qui a une inertie thermique supérieure à la terre et se réchauffe moins vite. De plus, le réchauffement est inégalement réparti et les hautes latitudes se réchauffent beaucoup plus vite que les tropiques, avec des pics de 4° attendus sur ces régions.

Est-on sûr que cela va se passer ? Non, mais la probabilité qu’on dépasse dès maintenant un seuil qu’on pensait atteindre entre 2025 et 2040 est importante. Comme les émissions de gaz à effet de serre ne diminuent pas, il faudrait que des phénomènes naturels soient à l’œuvre au cours des prochains mois pour contrecarrer la tendance prévue.

Par exemple si le phénomène El Niño s’avère moins puissant qu’envisagé, ou si un autre volcan envoyait du SO2 massivement dans toute l’atmosphère, alors seulement dans ce cas de figure les records de températures pourraient ne pas être battus dès maintenant.

Epargne en forte hausse, pourquoi ?

Epargne en forte hausse, pourquoi ?


Nouvelle collecte record pour le Livret A (qui atteint autour de 400 milliards) au premier semestre de cette année. Les Français * épargnent « parce qu’ils ont peur de l’avenir. Il y a de l’anxiété sur la situation économique, sur le pouvoir d’achat », analyse un économiste.

* ceux qui le peuvent de manière significative soit autour de 30% de la population

« Pour de l’argent de court terme, il n’y a pas mieux aujourd’hui » que le Livret A, estime samedi 22 juillet sur franceinfo Philippe Crevel, économiste et directeur du Cercle de l’épargne. Le Livret A a enregistré une collecte record au premier semestre 2023, avec un surplus de 25,84 milliards d’euros déposé dessus par rapport aux retraits effectués par les épargnants. L’économiste explique que si les épargnants veulent dépasser le taux de 3 %, « il faut prendre des risques et aller sur des valeurs qui vont fluctuer en fonction des marchés ». Mais Philippe Crevel rappelle que « les Français sont un peu réticents à prendre ce genre de risques ».

: Comment expliquer la collecte record du Livret A au premier semestre 2023 ?

Philippe Crevel : Depuis que le Livret A a été banalisé, c’est-à-dire distribué par tous les réseaux bancaires en 2009, jamais il n’avait collecté autant sur les six premiers mois de l’année. Les Français privilégient l’épargne sur la consommation. Depuis le début de l’année, à peu près 18 % du revenu des ménages est épargné et c’est le Livret A qui en bénéficie en premier parce que son taux de rémunération a été augmenté à trois reprises entre le 1er février 2022 et le 1er février 2023, avec un taux de 3 %. C’est inférieur au niveau de l’inflation, mais par rapport aux autres placements, c’est un placement attractif. Les ménages sortent l’argent des comptes courants qui s’était accumulé pendant la crise sanitaire pour le mettre sur ce placement, largement diffusé.

Pourquoi les Français épargnent-ils en ce moment ?

Parce qu’ils ont peur de l’avenir. Il y a de l’anxiété sur la situation économique, sur le pouvoir d’achat. [Les Français se demandent] si demain [ils pourront] faire face à des dépenses qui pourraient coûter plus cher en raison de l’inflation, alors par précaution, ils épargnent.

Le Livret A est-il, selon vous, un bon choix de placement ?

Pour de l’argent de court terme, il n’y a pas mieux aujourd’hui. 3 %, c’est un taux relativement élevé. Il y a simplement le livret d’épargne populaire qui offre un rendement supérieur, avec 6,1 % actuellement et à partir du 1er août, 6 %. Mais ce livret est réservé aux personnes qui globalement ne sont pas imposables à l’impôt sur le revenu. Alors si on veut dépasser ce 3 %, il faut prendre des risques et aller sur des valeurs qui vont fluctuer en fonction des marchés. On sait que les Français sont un peu réticents à prendre ce genre de risques.

À l’échelle globale, avoir trop d’épargne, est-ce bon pour l’économie ?

On oppose toujours épargne et consommation. Depuis le début de l’année, la consommation est un petit peu en panne, donc ça pénalise la croissance. Mais il ne faut pas non plus dire que l’épargne ne sert à rien. L’épargne mise sur le Livret A finance le logement social et les collectivités locales ; et le Livret développement durable et solidaire, le petit cousin du Livret A, finance les PME et un petit peu la transition énergétique, donc ce n’est pas forcément négatif. Nous avons besoin d’épargne pour le financement de l’économie des entreprises. Cette épargne doit être mobilisée, orientée vers cet objectif de la transition énergétique.

Le gouvernement a prévu [dans le projet de loi sur l'industrie verte, adopté en première lecture à l'Assemblée nationale dans la nuit du vendredi 21 au samedi 22 juillet] un nouveau produit à destination des jeunes, le plan d’épargne avenir climat. Celui-ci vise à inciter les parents et grands-parents à mettre de l’argent pour financer la transition énergétique à travers ce Livret qui ressemblera au Livret A. Il faut que l’argent aujourd’hui collecté sur les différents produits d’épargne serve à décarbonner l’économie.

Crédit immobilier: une baisse de 50%, pourquoi ?

Crédit immobilier: une baisse de 50%, pourquoi ?

s’enfonce de plus en plus dans la crise
En un an, le nombre de prêts octroyés par les banques s’est effondré de 50%. Idem pour le montant total de crédits. Du jamais vu depuis 6 ans, hors Covid explique un papier du Figaro.

Le nombre de prêts immobiliers a été divisé par deux en un an, selon l’Observatoire Crédit Logement. Idem pour la production de crédit qui a également chuté de 50%: de 22 milliards d’euros en mai 2022 à 11 milliards d’euros un an plus tard, selon la Banque de France. Du jamais depuis 6 ans, hors Covid! Deux dégringolades vertigineuses qui n’ont rien à voir, dans leur ampleur, avec le recul modéré des prix de l’immobilier. Car pour relancer le marché, cette baisse semble indispensable pour contrer la hausse des taux de crédit. Si la première est à l’œuvre, elle n’est pas suffisante. La seconde, quant à elle, continue sa progression et n’en finit plus de dégrader la solvabilité des emprunteurs.

Le blocage du marché immobilier prend ainsi la forme d’une crise du pouvoir d’achat. Pour inciter les vendeurs à baisser leur prix, les acheteurs, qui ont repris le pouvoir, imposent leur prix. Si le propriétaire est pressé, il accepte. Sinon, il refuse. Avec le risque que les prix continuent de baisser. Mais pendant ce temps-là, l’acheteur n’est pas forcément plus gagnant car les taux poursuivent leur ascension. C’est à celui qui perdra le moins de plumes. «C’est la faute des banques qui ne prêtent plus!», dénonce un quadragénaire, pourtant aisé, qui n’a pas pu obtenir de crédit pour acheter un logement à Bordeaux. «Nous sommes contraints par des règles très strictes», rétorque un banquier.

Il y en a trois. La première? Ne pas dépasser le taux d’usure, taux maximal fixé par la loi au-delà une banque ne peut pas prêter. Actuellement, il est fixé à 5,33%. Or, le taux de crédit moyen avoisine les 4%. Si vous ajoutez le taux de l’assurance et les frais annexes (caution/hypothèque, dossier), la barre des 5,33% ne devrait pas être dépassée *.

La seconde? Ne pas dépasser le taux d’endettement de 35% (des revenus). Problème: il l’est souvent à cause d’un apport trop faible ou d’un coût du crédit trop élevé. Car la troisième règle à respecter pour les banques, c’est de ne pas prêter sur plus de 25 ans. Or, la durée d’emprunt ne cesse de grimper et se rapproche lentement mais sûrement du seuil maximal: de 200 mois (16,7 ans) fin 2014 à 250 mois (21 ans) aujourd’hui.

Un chiffre prouve que le seuil maximal se rapproche: 66%. C’est la part de crédits accordés sur 20 à 25 ans, selon l’Observatoire Crédit Logement. En 2019, elle ne s’élevait qu’à 46%. Dans le même temps, les emprunts sur 15-20 ans ont fait le chemin inverse, passant de 31% à 19%. Pour relancer le marché du crédit et alléger la facture des emprunteurs, la solution serait d’allonger la durée maximale d’emprunt. Mais Bercy, pour l’heure, s’y refuse. «Pourquoi pas mais à condition que l’emprunteur reste longtemps dans son logement, analyse de son côté Maël Bernier, de Meilleurtaux. Si c’est pour vendre 2 ou 3 ans après avoir acheté, ce n’est pas intéressant. Sur 30 ans, on diminue les mensualités et l’endettement certes mais on amortit le coût de l’emprunt moins vite.» Résultat: au moment de la revente, le capital restant dû reste trop élevé (189.000 euros pour un emprunt de 200.000 euros sur 30 ans à 4,3% (hors assurance). Pour peu que les prix du nouveau logement n’aient pas baissé, ce sera la double peine.

Epargne en forte hausse, pourquoi ?

Epargne en forte hausse, pourquoi ?

Nouvelle collecte record pour le Livret A (qui atteint autour de 400 milliards) au premier semestre de cette année. Les Français épargnent ( ceux qui le peuvent, C’est-à-dire environ 50 % des Français) « parce qu’ils ont peur de l’avenir. Il y a de l’anxiété sur la situation économique, sur le pouvoir d’achat », analyse un économiste.

L’épargne réglementée des ménages (Livrets A, LDDS, LEP, PEL, etc) représente une part importante de l’épargne financière et des ressources bancaires. A la fin du 4ème trimestre 2022, elle atteint 874 milliards d’euros, dont 510 milliards pour le Livret A et le LDDS et 283 milliards pour le PEL.

« Pour de l’argent de court terme, il n’y a pas mieux aujourd’hui » que le Livret A, estime samedi 22 juillet sur franceinfo Philippe Crevel, économiste et directeur du Cercle de l’épargne. Le Livret A a enregistré une collecte record au premier semestre 2023, avec un surplus de 25,84 milliards d’euros déposé dessus par rapport aux retraits effectués par les épargnants. L’économiste explique que si les épargnants veulent dépasser le taux de 3 %, « il faut prendre des risques et aller sur des valeurs qui vont fluctuer en fonction des marchés ». Mais Philippe Crevel rappelle que « les Français sont un peu réticents à prendre ce genre de risques ».

: Comment expliquer la collecte record du Livret A au premier semestre 2023 ?

Philippe Crevel : Depuis que le Livret A a été banalisé, c’est-à-dire distribué par tous les réseaux bancaires en 2009, jamais il n’avait collecté autant sur les six premiers mois de l’année. Les Français privilégient l’épargne sur la consommation. Depuis le début de l’année, à peu près 18 % du revenu des ménages est épargné et c’est le Livret A qui en bénéficie en premier parce que son taux de rémunération a été augmenté à trois reprises entre le 1er février 2022 et le 1er février 2023, avec un taux de 3 %. C’est inférieur au niveau de l’inflation, mais par rapport aux autres placements, c’est un placement attractif. Les ménages sortent l’argent des comptes courants qui s’était accumulé pendant la crise sanitaire pour le mettre sur ce placement, largement diffusé.

Pourquoi les Français épargnent-ils en ce moment ?

Parce qu’ils ont peur de l’avenir. Il y a de l’anxiété sur la situation économique, sur le pouvoir d’achat. [Les Français se demandent] si demain [ils pourront] faire face à des dépenses qui pourraient coûter plus cher en raison de l’inflation, alors par précaution, ils épargnent.

Le Livret A est-il, selon vous, un bon choix de placement ?

Pour de l’argent de court terme, il n’y a pas mieux aujourd’hui. 3 %, c’est un taux relativement élevé. Il y a simplement le livret d’épargne populaire qui offre un rendement supérieur, avec 6,1 % actuellement et à partir du 1er août, 6 %. Mais ce livret est réservé aux personnes qui globalement ne sont pas imposables à l’impôt sur le revenu. Alors si on veut dépasser ce 3 %, il faut prendre des risques et aller sur des valeurs qui vont fluctuer en fonction des marchés. On sait que les Français sont un peu réticents à prendre ce genre de risques.

À l’échelle globale, avoir trop d’épargne, est-ce bon pour l’économie ?

On oppose toujours épargne et consommation. Depuis le début de l’année, la consommation est un petit peu en panne, donc ça pénalise la croissance. Mais il ne faut pas non plus dire que l’épargne ne sert à rien. L’épargne mise sur le Livret A finance le logement social et les collectivités locales ; et le Livret développement durable et solidaire, le petit cousin du Livret A, finance les PME et un petit peu la transition énergétique, donc ce n’est pas forcément négatif. Nous avons besoin d’épargne pour le financement de l’économie des entreprises. Cette épargne doit être mobilisée, orientée vers cet objectif de la transition énergétique.

Le gouvernement a prévu [dans le projet de loi sur l'industrie verte, adopté en première lecture à l'Assemblée nationale dans la nuit du vendredi 21 au samedi 22 juillet] un nouveau produit à destination des jeunes, le plan d’épargne avenir climat. Celui-ci vise à inciter les parents et grands-parents à mettre de l’argent pour financer la transition énergétique à travers ce Livret qui ressemblera au Livret A. Il faut que l’argent aujourd’hui collecté sur les différents produits d’épargne serve à décarbonner l’économie.

123456...36



L'actu écologique |
bessay |
Mr. Sandro's Blog |
Unblog.fr | Annuaire | Signaler un abus | astucesquotidiennes
| MIEUX-ETRE
| louis crusol