Archive pour le Tag 'l’intelligence'

Page 4 sur 5

Quelle place de l’homme face à l’intelligence artificielle (Eric Salobir)

Quelle place de l’homme face à l’intelligence artificielle (Eric Salobir)

(Cet article est issu de T La Revue de La Tribune – N°7 Décembre 2021)

 

Eric Salobir est président de Human Technology Foundation

Depuis quelques années, les observateurs remarquent une défiance accrue de la société civile vis-à-vis du progrès ; une certaine crainte même envers la science et les nouvelles technologies. Comment expliquer que nous en sommes arrivés là ?

Éric Salobir Ce dont on a peur, c’est de la nouveauté quand elle est disruptive, c’est-à-dire quand elle n’est pas incrémentale et que l’on voit doucement s’améliorer les choses. Or nous sommes en train de vivre un point de bascule. Depuis 20 ans, avec l’arrivée du numérique, de l’Internet et maintenant de l’intelligence artificielle, nous faisons face à ce qui est de l’ordre d’une révolution. Selon le World Economic Forum, cette phase de notre histoire s’apparente à une quatrième révolution industrielle. Selon moi, il s’agit avant tout d’une révolution épistémologique, j’entends par là que ce qui a profondément changé c’est notre rapport à la connaissance et notre rapport au monde. Cette révolution nous fait perdre et gagner des choses tout à la fois. Or, comme bien souvent, on voit vite ce que l’on perd mais pas tout de suite ce que l’on gagne. Nous sommes à une pliure de l’histoire. Tout se passe de l’autre côté du versant qui n’est pas forcément vu par tous. C’est ce voile qui est facteur d’inquiétude pour beaucoup de gens. Cela dit, je me souviens d’une très belle conversation que j’ai eue avec Michel Serres quelques mois avant son décès ; il était beaucoup plus optimiste que moi qui le suis pourtant déjà ! Il m’a rappelé que Socrate était contre l’utilisation de l’écriture car ce dernier était convaincu que la pensée allait être accessible à tout le monde y compris à des gens à qui elle n’était pas destinée et à qui elle ne serait pas expliquée. Pour Socrate, la pensée naît de la rencontre, du dialogue ; à partir du moment où l’on ne peut pas poser de questions, on ne peut pas débattre et donc il n’y a pas de pensée. Aujourd’hui on sait comment l’écriture a contribué au progrès de l’humanité et il est impensable de la remettre en question. Cela a été également le cas avec l’invention des caractères mobiles d’imprimerie qui ont permis de généraliser l’utilisation de l’écrit longtemps réservé aux plus riches. La crainte d’alors était que les textes soient transformés… c’étaient les fake news de l’époque. Mais encore une fois, on s’en est très bien sortis. Le monde s’est transformé. Michel Serres me faisait d’ailleurs remarquer qu’avec la génération de l’écrit, l’homme a beaucoup perdu de ses capacités de mémoire. Les civilisations de l’oral sont des civilisations de la mémoire, qui connaissaient par cœur des récits entiers. Il y avait d’ailleurs une formule latine qui était assez péjorative : « Doctus cum libro », que l’on peut traduire par « est savant quand il a ses livres ». Maintenant c’est « Doctus cum Google ». Tout le monde est savant dès qu’il a accès à des bases de données. Mais ce n’est plus péjoratif.

Surgit peut-être une nouvelle crainte : celle de voir l’humanité régresser intellectuellement, voire même de perdre en intelligence. À force d’être assisté par les outils numériques, l’homme aurait-il tendance à ne plus faire d’effort ? À trop utiliser le GPS par exemple, ne perd-il pas le sens de la lecture d’une carte ? Pour autant cette vision ne suggère-t-elle pas que le côté obscur de ce que l’on perd sans considérer ce que le numérique peut offrir culturellement parlant par exemple ?

É.S. La réponse est double. C’est-à-dire que d’un côté effectivement on perd des choses, il a été prouvé que les personnes utilisant tout le temps le GPS perdent le sens de l’orientation. Donc se repèrent moins bien dans l’espace en trois dimensions. Cela change notre appréhension du monde, c’est vrai. Mais, en même temps, une certaine forme de polychronie est apparue dans notre vie sociale. Nous explorons aujourd’hui des formes d’intelligence collaboratives qui n’existaient pas il y a 50 ans. On est plus multitâches, on travaille plus facilement en réseau, on crée de l’intelligence ensemble.

En revanche, je ne suis pas du tout naïf sur le fait que certains mésusages ou usages abusifs en termes de quantité de certaines technologies, de certains médias, finissent par induire des déséquilibres. Quand le patron d’une grande plateforme de streaming dit « mon concurrent principal c’est le sommeil », c’est extrêmement inquiétant car c’est la santé des personnes qui est en danger. Cela dit, on n’a pas attendu le numérique pour cela. Le président d’une grande chaîne de télévision française affirmait il y a quelques années « vendre du temps de cerveau disponible ». Finalement, le numérique n’est venu qu’à la suite d’un fonctionnement qui existait déjà. Ce que j’observe en revanche, c’est l’accroissement de nouvelles formes de fractures numériques.

C’est-à-dire ?

É.S. Les premières fractures se sont placées entre ceux qui n’avaient pas d’ordinateur ou ne savaient pas s’en servir, ceux qui étaient dans les zones blanches, et les autres. Maintenant la fracture se situe entre ceux qui sont capables de soulever le voile et de comprendre ce qui se passe derrière. C’est là le nouvel enjeu : faire en sorte qu’il n’y ait pas qu’une minorité de gens qui connaissent le fonctionnement des outils digitaux à l’instar des réseaux sociaux. Avoir conscience que les photos de comptes d’influenceurs sont souvent retouchées et donc ne reflètent pas la réalité ; apprendre à recouper l’information, à vérifier les sources. Car pour une immense majorité, l’influence du numérique peut conduire à la déprime et à la manipulation. Est-ce vraiment cela le progrès ? Non, je ne pense pas.

Justement, comment définiriez-vous le progrès ?

É.S. Je suis persuadé que le progrès ne vaut que s’il est partagé par tous. Célèbre allocution d’Aristote reprise comme slogan d’une compagnie de chemin de fer en son temps ! Mais je pense que c’est extrêmement vrai. Cela s’est confirmé notamment avec la pandémie. Il n’y a pas si longtemps, certains mouvements dits transhumanistes encourageaient l’investissement technologique dans l’amélioration significative de la vie d’une petite quantité de gens.

Certains se targuaient même de prendre des pilules à 1 000 dollars en espérant que cela allait rallonger leur vie. Depuis la pandémie, il est clair qu’en termes de santé, ce qui compte de manière essentielle c’est qu’il y ait des lits d’urgence pour tout le monde à l’hôpital quand il y a une épidémie. Cette situation a recentré le débat. En termes d’investissement, on est passé de chercher la pilule qui rendrait les milliardaires immortels à chercher un vaccin qui sauverait toute la planète. C’est un recentrage positif.

Cela dit, la crainte envers les vaccins n’a pas tardé à ressurgir, et cela de manière violente.

É.S. C’est vrai. Cette crainte est l’aboutissement d’une tendance que nous avions vue éclore il y a déjà quelques années. Nous avons d’ailleurs organisé un colloque il y a deux ans dont le but était de recréer la confiance dans les technologies, alors même que les gens de la Silicon Valley apparaissaient encore en couverture des magazines. Nous sentions pourtant qu’une certaine défiance était en train de naître. La vraie question c’est contre quoi et contre qui se tourne cette défiance ? Plusieurs éléments entrent en jeu. D’abord, on confond parfois science et progrès et malheureusement la crise pandémique aura sans doute fait tomber le dernier bastion de la parole qui existait : celui de la parole scientifique. Cela faisait longtemps que le public mettait en doute la parole des politiques, la parole des médias, même la parole des sphères économiques, mais pas la parole scientifique. C’était une parole qui était restée pure. Et ce bastion est tombé lorsqu’on a demandé à des scientifiques de se positionner sur des sujets sur lesquels ils n’avaient pas encore l’information. Est-ce la faute des médias qui les ont poussés à le faire ? Est-ce la faute des scientifiques qui ont cédé à cela ? Et puis, est arrivé le moment où l’on a demandé à tout le monde de parler de tout. Or, en dehors de sa discipline, un expert manque terriblement de discipline justement. Cela a contribué à l’émergence du mouvement antivax, dans lequel beaucoup ne croient plus les scientifiques. La parole des scientifiques semble abîmée.

Il y a là un transfert d’inquiétude. Prenons l’exemple des technologies numériques. Beaucoup accusent les algorithmes des pires maux, comme s’ils étaient capables de penser et d’agir. Mais c’est ce que l’homme fait des algorithmes qui est à remettre en cause, et plus largement la manière dont il utilise toutes ces nouvelles technologies. La défiance ne serait-elle pas à replacer vis-à-vis de l’humain tout simplement ?

É.S. La défiance vis-à-vis des scientifiques c’est une défiance vis-à-vis de l’humain. Et la difficulté avec l’algorithmique notamment c’est justement de savoir ce que l’on fait avec les algorithmes. Je me souviens d’une plateforme de recrutement en ligne qui avait mis en place un algorithme pour sélectionner les CV ; les dirigeants ne voulaient pas que ce soit basé sur un critère de genre mais en même temps il fallait bien mettre des critères et parmi eux il y avait la rapidité de réponse ; or il se trouve que les hommes réagissent souvent beaucoup plus vite que les femmes quand ils reçoivent une annonce car ils y voient une opportunité immédiate et beaucoup d’entre eux se sentent tout à fait confiants pour répondre. Alors qu’une femme va s’interroger sur ses compétences, se demander si le poste est bien pour elle et donc elle ne va pas répondre tout de suite. De fait, ce critère-là a induit indirectement un biais de genre. Heureusement la plateforme s’en est aperçue et ils ont mis en place un algorithme qui vérifie que la sélection comporte un pourcentage de femmes qui correspond à celui du marché. Cet exemple prouve que l’on n’a pas toujours toutes les clés et qu’à partir du moment où l’algorithme est apprenant il y a un risque de biais.

En tout état de cause, ce qu’il faut retenir de cette histoire, c’est que ce sont les humains qui sont en jeu. Dans le cadre d’un recrutement, d’une entrée à l’université, dans le cadre d’un crédit pour acheter une maison, c’est notre vie qui est en jeu et c’est là qu’il faut avoir une prudence particulière. Face à cela, mon but n’est pas de rassurer les gens mais de les aider pour qu’ensemble on éclaire le chemin. Les aider à voir les vrais dangers afin de déboulonner les fausses peurs qui, par essence sont mauvaises conseillères. Ces peurs risquent de freiner certaines populations dans l’adoption des technologiques alors que d’autres ne vont pas se freiner ; ce qui, de fait, va accroître la fracture que j’évoquais. Et l’une des difficultés que l’on voit c’est que cette fracture numérique existe aussi sur le marché du travail. Prenons l’exemple des livreurs, une application leur indique le chemin à utiliser et ils n’ont pas le droit d’en dévier. Au fond, ils travaillent pour une IA. Certaines plateformes de livraison en ligne calculent aussi les temps de pauses, la rapidité des gestes et n’hésitent pas à désigner ceux qui ne sont pas très performants. Et parfois même les remercier.

On est face à l’émergence d’un prolétariat numérique. Il y a ceux qui sont enchaînés à la machine et ceux qui sont remplacés par la machine. Aujourd’hui, il existe des algorithmes qui sont capables d’établir la base de contrats ou de vérifier des comptes. Or avant de devenir expert, que l’on soit comptable ou avocat, il faut passer par la case junior. Si l’algorithme fait le travail à la place d’un débutant, comment allons-nous former des experts chevronnés ? Il faut donc reconnaître que nous avons quelques défis à relever. Notre société va devoir s’adapter et il faut s’assurer que la façon dont elle s’adapte ne met pas en danger l’humain.

Comment faire pour redonner confiance au progrès ? Quelles actions avez-vous mises en œuvre ?

É.S. Human Technology Foundation, que je préside, est née de la rencontre d’un certain nombre de gens qui venaient du secteur privé technologique qui se sont aperçus que les lieux de dialogue fécond étaient quand même assez rares. Et qu’il fallait pouvoir se parler loin de la fureur, des micros, se parler calmement, penser, élaborer des solutions. Je n’ai été qu’un catalyseur de ce réseau, autour des autorités de l’Église catholique, des grandes entreprises mais aussi des start-ups, des universitaires, d’un certain nombre de représentants des régulateurs et de la société civile. Au départ, notre but était de dialoguer. Nous considérions que chacun avait un bout du puzzle, une vision propre. Et si nous voulions une vision à 360° il fallait s’asseoir autour d’une table. Dépassant le cadre d’une éthique conséquentialiste, largement répandue outre-Atlantique, nous tentons une approche plurielle, notamment fondée sur une éthique kantienne : la question n’est pas de savoir si vous ne faites de mal à personne mais de savoir si le principe de votre action est bon. Est-ce que je souhaite que tout le monde fasse ainsi ? Ne pas être néfaste ne suffit plus. Il faut un impact positif. Mais, paradoxalement, on l’atteint mieux en se focalisant non sur les conséquences mais sur les principes. C’est ce questionnement qui bouscule les choses, et qui plaît dans la Silicon Valley. Ce sont l’intention et la raison d’être qui sont questionnées. D’où l’émergence des entreprises à mission. Tout le travail qui a été fait en France avec la Loi Pacte va dans ce sens. Puis, nous nous sommes rendu compte que se parler entre nous n’allait pas suffire. Et qu’il fallait faire des études un peu plus approfondies. Nous avons alors travaillé sur la gouvernance des technologies en situation de crise. En ce moment, nous travaillons sur l’investissement responsable dans la technologie : nous souhaitons donner des métriques pour les investisseurs, des indicateurs extra-financiers pour les aider à vérifier que leurs investissements dans la technologie ont bien un impact positif.

Je suis ainsi partisan de l’autorégulation, car comme le dit l’un de nos partenaires de la Silicon Valley « les bad guys trouveront toujours un moyen de contourner la règle ». Pourtant, je suis aussi persuadé qu’il faut baliser le terrain pour éviter les débordements. Nous voulons donc également accompagner les acteurs des politiques publiques. Ils ont un rôle-clé.

Si la régulation ne suffit pas, que faut-il faire ? Avez-vous mis au point des méthodes spécifiques pour aider à redonner confiance dans le progrès ?

É.S. Il est nécessaire de mettre en place au sein des entreprises une culture de l’éthique, des bonnes pratiques. C’est déterminant. Et pour cela, nous avons créé un certain nombre d’outils. Nous avons par exemple élaboré une méthode d’évaluation éthique des technologies qui permet de vérifier l’impact d’un projet développé par une entreprise. Elle est très utile quand on aborde des technologies sensibles comme celle de la reconnaissance faciale. Cette méthode permet aux entreprises qui veulent bien faire, et il y en a un certain nombre, d’avoir les moyens de vérifier qu’elles font bien. Car l’éthique, en réalité, c’est assez complexe. Si je vous demande : « La reconnaissance faciale c’est bien ou pas bien ? » La question n’a pas de sens : l’identification des terroristes à la volée dans un aéroport, par le scan de tous les visages, n’a rien à voir avec le système d’authentification qui déverrouille votre téléphone. Ce sont deux approches très différentes. Notre méthode aide l’entreprise à se positionner au carrefour entre la technologie, le marché (le public cible qui peut être plus ou moins vulnérable) et le produit ; et l’aider à voir si ce qu’elle fait correspond bien à ses valeurs. Nous avons testé cette méthode au sein du groupe La Poste, qui a élaboré une charte éthique de l’IA et souhaite vérifier que ses projets technologiques sont en accord avec les valeurs exprimées dans ce document. La préoccupation forte était ici de s’assurer de l’adéquation entre les actions et les affirmations. Je trouve cela très sain. C’est une très belle démarche de prendre le temps de réfléchir aux principes que l’on veut appliquer. Et de se doter d’outils pour vérifier que cela ne reste pas lettre morte accrochée à un mur comme une espèce de mantra auquel on se réfère de temps en temps.

En tant qu’homme d’Église, pourquoi avoir choisi de travailler avec les entreprises ?

É.S. En fait, ce ne serait pas respectueux de travailler sur les nouvelles technologies sans dialoguer avec leurs développeurs. J’ai énormément de respect pour les dirigeants d’entreprises qui sont systématiquement stigmatisés quand quelque chose ne va pas mais à qui on ne dira pas forcément merci s’ils développent des process qui fonctionnent bien. Or, c’est un rôle difficile en ce moment. Il n’y a pas si longtemps, il suffisait d’avoir quelques bonnes intentions et de les afficher. Maintenant beaucoup d’entreprises approfondissent leurs projets pour vérifier que tout ce qui est fait, corresponde bien à ce qui est dit ; et ça c’est extrêmement compliqué. J’ai beaucoup de respect pour tous ceux qui innovent et tous ceux qui entreprennent et je pense qu’il faut s’asseoir à leurs côtés pour les aider à prendre la bonne direction. Parfois il faut les éclairer, les pousser du coude et leur dire quand cela pose problème, parfois il faut juste les aider à éclairer le chemin et à trouver des solutions.

Quand le changement de prisme se formalise, ne peut-on pas considérer cela aussi comme une innovation ?

É.S. On fait preuve d’innovation chaque fois que l’on déplace l’angle de vue et là, effectivement, le fait de penser autrement y contribue. Ce qui est une forme d’innovation c’est de penser aussi des nouveaux cadres, je prêche en ce sens. Ce n’est pas seulement d’inventer de nouvelles techniques : il existe aussi une innovation sociale. Par exemple, mettre en place un nouveau cadre pour la valorisation de la donnée en Europe c’est une forme d’innovation sociétale et technologique. Et là où l’innovation devient un progrès c’est effectivement au moment où l’innovation a un impact positif sur le plus grand nombre. C’est un point extrêmement important pour nous. Au sein de la Human Technology Foundation, nous défendons la technologie au service de l’humain. Mais l’humain, cela veut dire « tous les humains » !

Votre confiance en l’humain semble d’ailleurs inébranlable. Pour autant, l’air du temps est particulièrement anxiogène. Avez-vous un regard positif sur l’avenir ? Comment voyez-vous le monde en 2050 ?

É.S. Nous sommes dans une situation de recomposition du monde aussi bien économique que sociétale, avec des nouvelles lignes de fractures, même au niveau militaire où l’on voit l’émergence de nouvelles guerres froides, donc effectivement cette situation est assez anxiogène. Par ailleurs, sur un certain nombre de sujets, nous arrivons à la fin d’un cycle. Je pense que notre démocratie connaît des difficultés. Il existe peut-être un peu le fantasme d’une démocratie directe, où l’on gouvernerait directement par la rue, où l’on se rassemblerait sur les réseaux. Le danger c’est que les fins de cycle passent souvent par des ruptures qui sont plus ou moins violentes. Ce qui m’inquiète c’est qu’elles sont souvent violentes pour les mêmes. Ceux qui sont exposés, qui sont vulnérables.

Les crises que nous traversons et que nous allons traverser – la crise pandémique en est une, la crise climatique sera beaucoup plus importante – vont surtout marquer les plus vulnérables : ceux qui ont le moins de prise sur l’évolution du monde risquent d’en pâtir le plus. La violence de certaines de ces ruptures est inquiétante, on l’a vu avec des contestations très fortes, comme celles des antivax. On voit, en France, un groupe quasiment à l’affût d’une bonne raison de descendre dans la rue. C’est inquiétant.

Ce n’est pas très optimiste…

É.S. Oui, à court terme. Mais, à long terme, je partage la vision de Michel Serres que j’évoquais. L’humain s’est toujours tiré par le haut de toutes les révolutions épistémologiques. Je vous citais les caractères d’imprimerie mais chaque fois qu’une invention a bouleversé le quotidien, la résilience et l’inventivité de l’humain ont toujours pris le dessus. J’ai une grande confiance dans l’humain pour sa capacité à trouver des nouveaux modèles et nouveaux équilibres à moyen et long terme.

Plutôt que de croire au progrès - d’ailleurs peut-on croire au progrès ? On a la foi dans une religion, mais peut-on l’avoir dans le progrès, dans la science ? - aujourd’hui l’enjeu n’est-il pas de retrouver la foi en l’être humain ?

É.S. Un certain nombre de scientifiques vous diront que la foi dans la science existe car lorsque vous êtes scientifique, vous êtes obligé de croire ce que vous disent vos confrères. Car tout le monde ne refait pas toutes les démonstrations. Et d’une discipline à l’autre, les scientifiques s’appuient aussi sur des choses qui ont été découvertes par d’autres dans des domaines qu’ils ne sont pas du tout capables de comprendre. En effet, la foi est liée à la confiance. Et à un moment, il faut avoir confiance. Or, aujourd’hui, la parole scientifique est mise à mal, donc la foi dans la science est mise à mal également. En revanche, l’humain ne se départit pas d’une forme de pensée magique, chamanique presque. Et je pense que cette pensée-là, on l’a quand même beaucoup investie dans des moyens technologiques, c’est un peu le principe du totem.

C’est-à-dire ?

É.S. Je pense aux enceintes connectées. Elles sont un peu à l’image des dieux Lares que l’on plaçait dans l’atrium pour protéger le foyer, dans la Rome antique. Aujourd’hui, elles sont dans la cuisine ou dans le salon, ce sont des petits objets qui sont censés eux aussi protéger le foyer sauf que les dieux Lares étaient des statuettes, et qu’il fallait vraiment y croire. Les auteurs de psaumes se moquaient ainsi des faux dieux : « Ils ont une bouche mais ne parlent pas, ils ont des oreilles mais n’entendent pas ». Mais si vous dites « Alexa, Siri ou Google, commande-moi une pizza », ils le font. Ces enceintes sont connectées au système d’alarme, aux téléphones des enfants et vous envoient un bip pour vous rassurer quand ils rentrent le soir, elles sont connectées au système de chauffage et le baissent si vous oubliez de le couper en partant. Finalement, oui, elles prennent soin du foyer. Et elles fonctionnent un peu sur le principe des dieux car elles sont aussi une porte ouverte sur la connaissance et sur l’extérieur. Quand vous leur posez une question et qu’elles vous répondent, ne peut-on pas les comparer à la voix de la Pythie ?

Tout cela est de l’ordre du totem. On les admire, les vénère, on ne sait pas bien comment elles fonctionnent et on attend d’elles une forme de protection. Le problème c’est que le totem par définition, c’est l’aliénation. Vous remettez une partie de vous-même, de votre liberté. Vous l’aurez compris, je n’en veux pas à la technologie, en revanche je m’inquiète pour l’humain. J’ai foi en Dieu et confiance dans l’humain. En tant que chrétien, je le dirais conçu à l’image de Dieu créateur ; que l’on soit inventif ce n’est pas un hasard. En même temps, j’ai bien conscience aussi que le vivant ne survit que par économie d’énergie. Le danger est donc que notre esprit cède petit à petit à cette forme de paresse qui consiste à laisser la machine choisir pour lui. L’humain assisté ne risque-t-il pas d’être un peu moins humain ? Je suis profondément persuadé que les technologies sont des productions de la société aux deux sens du génitif, c’est-à-dire que d’un côté nous les produisons, collectivement, ce sont des technologies qui ressemblent à nos sociétés, et d’un autre côté, à mesure qu’on les utilise elles nous façonnent, elles nous transforment. À un moment, est-ce que cette production fait de nous des gens plus humains, ça nous humanise ou ça nous déshumanise ? Nous sommes arrivés à une ligne de fracture, à nous de choisir la bonne direction. Il faut peut-être réinventer la façon dont on est humain à l’âge de l’intelligence artificielle.

…………………………………….

Éric Salobir est l’auteur de Dieu et la Silicon Valley aux Éditions Buchet-Chastel, 2020.

L’intelligence artificielle : Pour une utilisation sobre

L’intelligence artificielle : Pour une utilisation sobre

Loin de tous les fantasmes qu’elle charrie, Guy Mamou-Mani, coprésident d’Open, entreprise de services du numérique, plaide pour une utilisation sobre et responsable de l’intelligence artificielle, et plus largement des outils digitaux. ( la Tribune)

 

De quoi parle-t-on lorsque l’on parle d’intelligence artificielle ?

Guy Mamou-Mani : En préambule, il est nécessaire de revenir sur la révolution numérique que nous sommes en train de vivre. Tous les secteurs, toutes les entreprises, tous les métiers, tous les individus sont concernés par cette dernière. Elle va transformer en profondeur, d’une part la vie de chaque citoyen, et de l’autre le business model des organisations. Il faut donc se préparer à cette révolution numérique dont l’un des outils majeurs est l’intelligence artificielle (IA) qui draine énormément de fantasmes. A ce sujet, on peut schématiquement parler de deux niveaux. Il y a, tout d’abord, ce que je nomme l’IA réaliste, basée sur la connaissance de la data et qui va démontrer toute son utilité. Appliquée, par exemple, à la médecine, l’IA va pouvoir faire preuve d’une lisibilité 1 000 fois supérieure à celle de l’humain grâce à l’acquisition d’expérience basée sur la lecture d’un très grand nombre de radios. Non pour remplacer le radiologue, mais bien pour augmenter ses compétences. Et cela est vrai pour tous les métiers.

Qu’en est-il du second niveau ?

Guy Mamou-Mani : Il s’agit de l’IA forte. Elle consiste à imaginer que l’ordinateur va pouvoir devenir autonome et prendre des décisions par lui-même. Le fameux ordinateur HAL du film de Stanley Kubrick, 2001 l’Odyssée de l’Espace, en est une illustration possible. Pour ma part, je pense que cela relève de la science-fiction. Nous n’en sommes pas à ce niveau, et je ne sais pas si l’on y parviendra. Il ne sert donc à rien d’agiter certaines peurs. Aujourd’hui, l’IA qui nous concerne est celle de premier niveau. C’est à partir de celle-ci qu’il convient de raisonner.

L’IA, même de premier niveau, pose toutefois un certain nombre de questions d’ordre éthique. Comment justifier d’une décision prise par une IA ?

Guy Mamou-Mani : C’est effectivement un point crucial. Ma réponse est claire : dans aucun cas, on ne devra laisser l’IA prendre de décisions. C’est à l’homme, aux chefs d’entreprises, aux managers, de prendre une décision en fonction des éléments donnés par l’IA. Au cœur du sujet, se trouve la problématique suivante : l’homme va-t-il rester maître de la décision par rapport à la technologie ou va-t-il la subir ? C’est pourquoi, l’éducation et la formation vont jouer un rôle essentiel pour que nous restions maîtres de ces technologies, via une utilisation sobre responsable de la donnée, et plus largement du numérique. Chez Open, ces réflexions font partie du quotidien du groupe.

On reproche également à l’IA de reproduire les biais humains…

Guy Mamou-Mani : Les algorithmes qui forment la base de l’IA sont élaborés par l’homme. La possibilité existe donc que les biais que nous connaissons soient reproduits par l’IA. Pour passer cet écueil, il existe plusieurs types de réponses. Par exemple, pour lutter contre la misogynie, il faut encourager les femmes à investir le secteur informatique pour devenir des actrices de l’IA. Aujourd’hui, elles ne représentent que 10 à 15 % des personnes qui travaillent dans ce domaine. Il faut faire en sorte que cette proportion augmente pour créer une rupture. Par ailleurs, de la même manière que pour la biologie, il est très important de créer des comités d’éthique qui vont poser un certain nombre de règles. A nous de nous engager pour construire le futur et non pas le subir.

Guy Mamou-Mani est l’auteur de l’ouvrage « L’apocalypse numérique n’aura pas lieu » (Editions de l’Observatoire).

La régulation de l’intelligence artificielle par l’Unesco

La régulation de l’intelligence artificielle (par l’Unesco)

 

L’Unesco a annoncé jeudi 25 novembre avoir adopté un premier texte mondial sur l’éthique de l’intelligence artificielle. 

 

Dans son rapport du printemps 2019, un  groupe d’experts de haut niveau de la Commission européenne notait que : « Dès qu’un système d’IA a une incidence importante sur la vie des personnes, il devrait être possible d’exiger une explication appropriée du processus de décision. »

Absence de sens commun. Performants pour des tâches simples et répétitives, les systèmes d’IA n’ont en revanche aucune compréhension du monde qui les entoure, ou du contexte dans lequel ils opèrent. Cela entraîne, par exemple, des erreurs de traduction cocasses (pour s’en assurer, il suffit de tester la phrase « mon avocat est immangeable » sur Google Traduction).

Mais cela peut aussi engendrer de graves dérives : après les attentats de Londres en juin 2017, l’algorithme de tarification dynamique d’Uber avait commencé par doubler le tarif des courses dans la zone concernée pour répondre à l’afflux de demandes.

Une solution à cette absence de sens commun peut être de mettre des humains « dans la boucle » des décisions, mais ce n’est pas toujours possible. Une autre approche consiste à définir des seuils de confiance, au-delà desquels une validation de la décision deviendrait obligatoire.

Certification impossible. Pour certaines applications, notamment dans les systèmes critiques (transport aérien, par exemple), les logiciels sont aujourd’hui certifiés, c’est-à-dire que leur fiabilité est mesurée et garantie. L’informatique classique, basée sur des programmes et des règles, le permet. En revanche, ce n’est pas encore possible avec les outils d’intelligence artificielle, dont les résultats varient en fonction des données qui servent à les entraîner. Aujourd’hui, aucun pilote automatique d’avion ne repose sur des outils d’intelligence artificielle et on imagine mal que les voitures autonomes soient autorisées à grande échelle sans aucune certification.

Dans leur rapport de 2019, les experts de l’Union européenne appelaient de leurs voeux la mise en place de ces certifications, qui « appliqueraient des normes définies pour différents domaines d’application et techniques d’IA, dûment alignées sur les normes industrielles et sociétales des différents contextes. »

« Les technologies de l’IA peuvent rendre de grands services à l’humanité » et « tous les pays peuvent en bénéficier », mais  »elles soulèvent également des préoccupations éthiques de fond », souligne dès son préambule la recommandation de 28 pages, ratifiée par les 193 Etats-membres de l’Unesco.

Fruit d’un travail ayant démarré en 2018, la recommandation de l’Unesco met en avant des valeurs – « respect, protection et promotion des droits de l’homme », « diversité et inclusion », promotion de  »sociétés pacifiques » et de l’environnement – que les Etats-membres s’engagent à respecter.

Elle liste également des actions que les signataires devront réaliser, notamment la mise en place d’un outil législatif pour encadrer et surveiller les IA,  »assurer une sécurité totale pour les données personnelles et sensibles » ou encore éduquer les masses à leur sujet.

Sauver la démocratie avec l’intelligence collective ?

Sauver la démocratie avec l’intelligence collective ?

Pour changer les institutions politiques et raviver le processus démocratique, pourquoi ne pas miser sur la participation citoyenne et l’intelligence collective ? Estime Alexis Jeffredo, Université de Lorraine

 

Un article intéressant dans ses intentions mais qui fait d’abord l’impasse sur l’intermédiation des organisations existantes et qui oublie que les différentes expériences évoquées ont toutes échouées du fait du noyautage par l’extrême-gauche.

En avril 2016, en réaction à la « loi Travail », nous assistions à l’émergence du mouvement autogéré « Nuit debout », une initiative citoyenne prenant la forme de manifestations sur des places publiques avec pour but de faire émerger une convergence des luttes.

Dans la continuité, émerge en octobre 2018 le mouvement social des « gilets jaunes », en réaction à « des régimes politiques vieillissants et à la montée des inégalités », et dont l’une des revendications principales portait sur la mise en place du référendum d’initiative citoyenne (RIC).

Ces mouvements ont participé par leur ampleur à un éveil des consciences, aussi bien citoyennes que politiques, sur la nécessité d’inclure plus efficacement les Français dans les processus de décision du gouvernement.

Entre ces deux évènements, l’élection présidentielle de 2017 a atteint un taux d’abstention record (25,3 % au second tour) qui n’avait pas été observé depuis l’élection de 1969 (31,1 % au second tour). Plus récemment, le taux d’abstention aux élections régionales (juin 2021) a atteint le niveau record de 65,7 %, contre 41,59 % en 2015.

Cette augmentation constante du taux d’abstention est le résultat d’une défiance des citoyens envers la politique et non seulement d’un désintérêt pour la chose : 90 % des abstentionnistes-répondants considèrent ce phénomène comme le résultat d’une « rupture entre les citoyens et la vie politique » ; 84 % y voient un signal d’alarme ; 65 % considèrent que cette abstention constitue quelque chose « d’inquiétant pour notre démocratie ».

Ces évènements politiques et sociaux sont les conséquences directes des limites d’un système politique usé et démontrent un besoin fondamental de se recentrer sur des démarches d’intelligence collective pour ré-ouvrir un espace commun de réflexion et d’échange, avec pour finalité concrète la formalisation de nouvelles directives politiques et institutionnelles. En réponse à ces évènements, le gouvernement a mis en place des démarches jusque-là inédites en France : le « grand débat national », lancé par le président de la République (15 janvier – 15 mars 2019), et la « convention citoyenne pour le climat » (octobre 2019 – juin 2020).

Le grand débat national (GDN)

Le GDN a rassemblé 645 000 personnes pour près de deux millions de contributions et mobilisé plus de 10 000 réunions locales. Même si ces chiffres sont encourageants, il s’avère que le taux de participation est directement lié à la situation socio-professionnelle des citoyens, avec un bien plus grand taux de participation chez les populations aisées, si bien que le débat est « filtré sociologiquement ».

De plus, parmi 645 000 personnes, seules 475 000 ont réellement contribué au grand débat, soit 0,7 % de la population française, avec une absence remarquée des 16-24 ans. Plus important encore, la plupart des contributions (71,5 %) sont des réponses à des questions à choix multiples, le GDN prenant ainsi davantage la forme d’un sondage que d’un espace d’échange, de réflexion et d’innovation.

Le GDN concernait 4 thèmes : transition écologique, fiscalité, démocratie et citoyenneté, organisation de l’état et des services publics. Seulement, ces thèmes ont été fixés en amont du débat par le gouvernement et sans consultation des citoyens, limitant ainsi le champ des propositions possibles. De fait, certains thèmes essentiels pour les citoyens demeurent de grands absents du GDN, comme l’emploi, l’éducation ou la santé. Finalement, seuls 8 % des participants au grand débat se disent satisfaits des thèmes choisis.

Enfin, le GDN place les citoyens dans une position de consultants extérieurs et en aucun cas de décisionnaires : 650 pages de synthèses viennent clarifier les préoccupations et les avis des Français, mais aucun système légal ne vient garantir la mise en place des solutions qui y sont évoquées. Le gouvernement a, à plusieurs reprises, précisé « qu’il ne s’agissait que d’un échantillon qualitatif de l’opinion publique, et non d’une série de votes ».

Les points les plus populaires formulés dans le GDN n’ont ainsi pas aboutis : réduction du nombre de parlementaires (86 %), prise en compte du vote blanc (69 %), adoption du référendum d’initiative citoyenne (à l’origine du grand débat, et pourtant absente des propositions formulées par le gouvernement). Même si certaines mesures ont étés adoptées par le gouvernement depuis, notamment concernant le pouvoir d’achat, la plupart des points abordés par le président de la République après le GDN sont encore en discussion : réduction du nombre de parlementaires, suppression de niches fiscales, réduction de la part de l’énergie nucléaire, interdiction du glyphosate, réforme des retraites…

La convention citoyenne pour le climat

La C3 est une des mesures annoncées des suites du GDN, elle regroupe 150 citoyens tirés au sort parmi la population française, avec pour but de proposer des mesures structurantes afin assurer une transition écologique efficace d’ici 2030. Après sept sessions de travail (octobre 2019 – juin 2020), ont émergé 149 propositions sur 6 axes thématiques : le déplacement, la consommation, le logement, le travail, l’alimentation et la constitution.

Lors du dernier rassemblement de la C3 (26-28 février 2021), les membres ont évalué les réponses apportées par le gouvernement à leurs propositions : sur les 98 votants, 38 ont jugé les décisions du gouvernement très insatisfaisantes, 33 insatisfaisantes, 14 passables, 2 satisfaisantes et 5 très satisfaisantes, avec pour finalité une note générale de 3,3/10 concernant la possibilité que les décisions du gouvernement permettent d’atteindre l’objectif fixé à la création de la convention. Le président de la République annonçait une retranscription sans filtres des productions de la C3, mais dans les faits 90 % des propositions n’ont pas été retenues par l’exécutif, soit 134 mesures sur les 149 présentées. Dans le détail, 53 % des propositions sont rejetées (79 propositions), 37 % sont modifiées ou selon les participants « édulcorées » (55 propositions), alors que seulement 10 % sont reprises sans modification (15 propositions).

Les propositions retenues par le gouvernement sont essentiellement cosmétiques : créer des parkings relais ; des vignettes vertes pour les véhicules les moins émetteurs ; taxer davantage le carburant pour l’aviation de loisirs ; généraliser l’éducation à l’environnement dans le modèle scolaire… Parmi les 15 propositions retenues, trois seulement se distinguent : le changement des chaudières au fioul et à charbon d’ici 2030 dans les bâtiments neufs et rénovés ; la réduction de la consommation d’énergie des bâtiments du secteur tertiaires et des espaces publics ; l’interdiction de toute artificialisation des terres si des réhabilitations sont possibles. Cette sélection du gouvernement est à l’origine de l’insatisfaction des membres de la C3, qui la juge non représentative du travail de fond réalisé en réunion, et qui dénoncent un « manque d’ambition du gouvernement », un projet « vidé de sa substance, édulcoré ».

L’intelligence collective comme outil de la vie politique

Même si les démarches présentées jusqu’ici sont inédites en France, elles ne le sont pas pour autant dans le monde : cette méthode de travail, dite d’approvisionnement par les foules (« crowdsourcing »), remporte déjà de nombreux succès dans la recherche scientifique, donnant lieu à ce que l’on nomme « les forums du Web 2.0 », des espaces numériques dans lesquels des milliers de personnes pronostiquent chaque jour les événements et solutions de demain, notamment dans le cadre de l’écologie (EvidenceHubEnergyUse, EcoForum).

 

L’intelligence collective peut être définie comme « une intelligence partout distribuée, sans cesse valorisée, coordonnée en temps réel, qui aboutit à une mobilisation effective des compétences ». Son étude a mené à des conclusions encourageantes : il est déjà reconnu que dans des conditions optimales, les groupes de non-experts peuvent être plus efficaces qu’un expert isolé, un phénomène dû à la capacité des groupes à faire preuve d’une correction mutuelle des biais individuels.

Ces groupes s’avèrent d’autant plus efficaces lorsque leurs membres démontrent de la diversité dans leurs modes de vie et de pensée, qu’ils mettent à profit un leadership dynamique et participatif, dans lequel les membres s’ajustent mutuellement sur leurs rôles en fonction des besoins du groupe, et font preuves d’une riche intelligence émotionnelle, soit la capacité d’un individu à identifier et préserver les états émotionnels d’autrui.

Ces éléments ne sont pas systématiquement valorisés dans la vie politique, alors qu’ils sont le fondement même du processus d’intelligence collective.

 

Nous assistons à un changement aussi bien de fond que de forme dans les manifestations publiques : longtemps considérées comme des lieux de contestation, les manifestations se tournent désormais davantage vers une démarche solutionniste, formalisant et proposant des alternatives concrètes pour répondre aux enjeux actuels, aménageant ainsi un espace fertile pour l’essor d’intelligence collective. Le GDN et la C3 ont émergé pour répondre à cette évolution, qui s’incarne notamment au travers d’une demande citoyenne : celle de prendre part activement aux processus décisionnels.

L’une des expressions les plus représentatives de ce besoin se trouve à l’origine même du débat : la mise en place du référendum d’initiative citoyenne (RIC), qui permettrait aux citoyens d’être à l’initiative de projets de loi. De tels manœuvres sont des illustrations de ce besoin d’adopter des démarches d’intelligence collective pour co-construire les politiques publiques de demain. Il existe actuellement 8 formes potentielles de RIC, chacune de ses formes renvoyant à une dimension particulière de la vie politique et donc à une demande spécifique, assurant ainsi leur complémentarité.

Le collectif « Démocratie ouverte » proposait en 2018 un RIC amélioré, rebaptisé dans ce contexte RIC2 pour « Référendum d’Initiative citoyenne et d’intelligence collective », qui s’articule autour de quatre étapes : l’initiative citoyenne, un débat public structuré, un jury citoyen tiré au sort et la mise en place du référendum par un vote majoritaire.

Plusieurs dispositifs privilégiés par le gouvernement français ressemblent au RIC, notamment le référendum d’initiative partagé, consultatif ou d’initiative présidentielle. Seulement, ces propositions rejettent l’aspect le plus fondamental d’une telle démarche :

« Les initiatives citoyennes sans référendums, ainsi que les référendums sans initiative citoyenne ne fournissent pas réellement la possibilité pour les citoyens de produire directement la loi. »


La question de l’initiative citoyenne est essentielle car au fondement de notre démocratie et de notre conscience politique : nous évoluons en France dans une démocratie représentative, un modèle régulièrement contesté pour ses nombreuses limites.

C’est actuellement au rôle de consultants extérieurs que sont limités les citoyens au travers des actions collectives comme le GDN ou la C3. En l’état, le pari de l’intelligence collective n’est fait que dans un sens : la participation des citoyens est réelle, mais elle se fait sans le soutien des décideurs, limitant ainsi toutes possibilités d’entrer dans une démarche d’intelligence collective réelle et durable.

________

Par Alexis Jeffredo, Doctorant en psychologie sociale et cognitive, Université de Lorraine

L’auteur de cet article est doctorant au laboratoire InterPsy de l’Université de Lorraine. Il réalise une thèse (« L’intelligence collective des groupes en situation de résolution de problèmes ») sous la direction de Martine Batt, Professeur à l’Université de Lorraine, et Emile Servan-Schreiber, Dr. en psychologie cognitive au Massachusetts Institute of Technology (MIT).

Des règles européennes pour l’intelligence artificielle ?

Des règles européennes pour l’intelligence artificielle ?

Le projet de la Commission européenne ouvre la voie à une nouvelle manière de penser et de pratiquer le droit communautaire, se réjouit, dans une tribune au « Monde », l’avocat Jean-Baptiste Siproudhis.

 

Tribune.

 

 La Commission européenne (CE) a publié le 21 avril 2021 un projet de règlement établissant des règles harmonisées concernant l’intelligence artificielle (IA). Ce projet inaugure une forme inédite de réglementation combinant droit, normes, éthique et « compliance » [mise en conformité]. Cette innovation, dont l’aboutissement peut prendre plusieurs années au rythme de la procédure habituelle, ouvre cependant la voie à une nouvelle manière de penser et de pratiquer le droit européen, à laquelle les juristes doivent d’ores et déjà se préparer.

Pour la Commission, l’intelligence artificielle est une famille de technologies en évolution rapide qui nécessite la mise en place de nouvelles formes de contrôle incluant un espace pour l’expérimentation continue. Ce contrôle doit permettre de prévenir les risques d’atteintes par l’IA aux droits fondamentaux de l’Union européenne (UE), tout en encourageant une innovation responsable. Le principal enjeu de cette nouvelle réglementation consiste à définir des règles d’encadrement de comportements et de produits d’IA qui ne sont pas encore envisagés à ce jour, ce qui rompt avec la logique séculaire consistant à légiférer sur le « connu ».

 

A cet effet, la Commission propose un nouvel ordonnancement juridique composé d’une part de la Charte des droits fondamentaux de l’UE et, d’autre part, de règlements spécifiques comme celui de l’IA, l’ensemble étant destiné à prévenir les violations possibles de certains de ces droits (droit à la dignité humaine, au respect de la vie privée et à la protection des données à caractère personnel, à la non-discrimination et à l’égalité entre les femmes et les hommes). Ce système de prévention prévu par la Commission européenne repose sur le contrôle de la mise en place de dispositifs de compliance par les entreprises selon des niveaux de « risques IA » identifiés (inacceptable, élevé, moyen, faible). Le règlement IA est donc une réglementation de compliance.

La Commission incite également les entreprises à anticiper ces risques dans la conception et le fonctionnement de leurs produits d’IA, en définissant en interne les « bons comportements » préventifs à travers des codes de conduite. En ce sens, le projet de règlement IA est une réglementation qui encourage l’éthique des affaires. Il prévoit aussi un système de certification des dispositifs de compliance IA des entreprises par des « organismes d’évaluation », avec un marquage « CE ». Pour obtenir cette certification, les entreprises devront mettre en place un système de « gestion de la qualité » que l’on retrouve à travers les normes de l’International Standard Organization (ISO) [qui édicte les normes techniques imposées aux entreprises]. Le règlement IA est donc une réglementation de norme.

Nouvelles technologies-Pour une approche philosophique aussi de l’intelligence artificielle

Nouvelles technologies- Pour une approche philosophique aussi de  l’intelligence artificielle

Le philosophe Martin Gibert considère nécessaire d’insuffler une morale aux robots, chatbots et autres machines. Et suggère d’entraîner leurs algorithmes d’apprentissage à partir des avis et des comportements d’humains vertueux.

 

Martin Gibert est philosophe et chercheur à l’université de Montréal, affilié au Centre de recherche en éthique et à l’Institut de valorisation des données. En 2015, il appliquait les théories morales classiques au véganisme dans Voir son steak comme un animal mort (Lux Editeur). Il vient de faire de même, sur le terrain plus artificiel des robots, machines et autres algorithmes, dans Faire la morale aux robots (Flammarion, 168 p., 17 €).

Pourquoi un philosophe s’occupe-t-il des dispositifs d’intelligence artificielle (IA) tels que les voitures autonomes, les chatbots ou les systèmes de recommandation en ligne ?

Le moment est vraiment passionnant pour un philosophe car nous pouvons nous poser sur ces dispositifs des questions à la fois inédites et très fondamentales. Et, en plus, c’est très concret, avec des applications immédiates et urgentes. Prenons le cas célèbre du dilemme du tramway, posé par Philippa Foot en 1967 : actionne-t-on un aiguillage pour éviter que le véhicule percute cinq travailleurs si, sur l’autre voie, se trouve une seule personne ?

Jusqu’aux avancées récentes de l’IA, il faut bien dire que les philosophes réfléchissaient aux réponses, mais leurs réponses ne prêtaient pas à conséquence. Désormais, leur avis compte. Nous devons dire quelque chose aux programmeurs dont les algorithmes feront le choix fatal ! L’IA nous oblige à prendre des décisions sur ce qui est bien ou mal, et ce n’est plus une simple expérience de pensée.

Pour y voir clair sur ce qu’il s’agit de faire, il faut ordonner un peu différents domaines en éthique appliquée. Par ordre de généralité, on a d’abord l’éthique de la technique, dans laquelle on va mettre aussi bien les tournevis que les centrales nucléaires. A un deuxième niveau, l’éthique de l’IA pose des questions comme l’impact de ces systèmes sur la société ou l’environnement, ou encore sur d’éventuels droits des robots.

L’éthique des algorithmes qui m’intéresse dans le livre se situe à un troisième niveau, plus spécifique. Comment programmer une machine, un algorithme, un agent moral artificiel pour qu’il se comporte « bien » ? Cela oblige à rentrer dans les détails et, bien sûr, cela n’empêche pas de s’interroger sur l’échelon supérieur : collectivement, a-t-on vraiment besoin de tel ou tel robot ?

 

C’est d’autant plus intéressant et nécessaire que les algorithmes ont des effets sur la vie des gens. Dans le cas d’une voiture autonome confrontée au dilemme du tramway, c’est évident, mais ce seront des décisions très rares à prendre. En revanche, un algorithme de recommandations de YouTube ou Facebook peut avoir des conséquences massives sur la circulation des informations. Plus on développe de nouveaux pouvoirs, plus on a de responsabilité morale. Même derrière un chatbot, il y a des enjeux moraux sérieux.

Pour une approche philosophique aussi de l’intelligence artificielle

Pour une approche philosophique aussi de  l’intelligence artificielle

Le philosophe Martin Gibert considère nécessaire d’insuffler une morale aux robots, chatbots et autres machines. Et suggère d’entraîner leurs algorithmes d’apprentissage à partir des avis et des comportements d’humains vertueux.

 

Martin Gibert est philosophe et chercheur à l’université de Montréal, affilié au Centre de recherche en éthique et à l’Institut de valorisation des données. En 2015, il appliquait les théories morales classiques au véganisme dans Voir son steak comme un animal mort (Lux Editeur). Il vient de faire de même, sur le terrain plus artificiel des robots, machines et autres algorithmes, dans Faire la morale aux robots (Flammarion, 168 p., 17 €).

Pourquoi un philosophe s’occupe-t-il des dispositifs d’intelligence artificielle (IA) tels que les voitures autonomes, les chatbots ou les systèmes de recommandation en ligne ?

Le moment est vraiment passionnant pour un philosophe car nous pouvons nous poser sur ces dispositifs des questions à la fois inédites et très fondamentales. Et, en plus, c’est très concret, avec des applications immédiates et urgentes. Prenons le cas célèbre du dilemme du tramway, posé par Philippa Foot en 1967 : actionne-t-on un aiguillage pour éviter que le véhicule percute cinq travailleurs si, sur l’autre voie, se trouve une seule personne ?

Jusqu’aux avancées récentes de l’IA, il faut bien dire que les philosophes réfléchissaient aux réponses, mais leurs réponses ne prêtaient pas à conséquence. Désormais, leur avis compte. Nous devons dire quelque chose aux programmeurs dont les algorithmes feront le choix fatal ! L’IA nous oblige à prendre des décisions sur ce qui est bien ou mal, et ce n’est plus une simple expérience de pensée.

Pour y voir clair sur ce qu’il s’agit de faire, il faut ordonner un peu différents domaines en éthique appliquée. Par ordre de généralité, on a d’abord l’éthique de la technique, dans laquelle on va mettre aussi bien les tournevis que les centrales nucléaires. A un deuxième niveau, l’éthique de l’IA pose des questions comme l’impact de ces systèmes sur la société ou l’environnement, ou encore sur d’éventuels droits des robots.

L’éthique des algorithmes qui m’intéresse dans le livre se situe à un troisième niveau, plus spécifique. Comment programmer une machine, un algorithme, un agent moral artificiel pour qu’il se comporte « bien » ? Cela oblige à rentrer dans les détails et, bien sûr, cela n’empêche pas de s’interroger sur l’échelon supérieur : collectivement, a-t-on vraiment besoin de tel ou tel robot ?

 

C’est d’autant plus intéressant et nécessaire que les algorithmes ont des effets sur la vie des gens. Dans le cas d’une voiture autonome confrontée au dilemme du tramway, c’est évident, mais ce seront des décisions très rares à prendre. En revanche, un algorithme de recommandations de YouTube ou Facebook peut avoir des conséquences massives sur la circulation des informations. Plus on développe de nouveaux pouvoirs, plus on a de responsabilité morale. Même derrière un chatbot, il y a des enjeux moraux sérieux.

L’intelligence artificielle pour lutter contre le blanchiment et le terrorisme

L’intelligence artificielle pour lutter contre le blanchiment et le terrorisme 

 

Astrid Bertrand, Winston Maxwell et Xavier Vamparys, chercheurs à Télécom Paris, expliquent, dans une tribune au « Monde » que l’intelligence artificielle peut rendre efficace les dispositifs antiblanchiment qui actuellement coûtent plus qu’ils ne rapportent en Europe.

 

Tribune.Le régulateur des établissements financiers, l’Autorité de contrôle prudentiel et de résolution (ACPR), a récemment sanctionné Carrefour Banque, Cardif, filiale d’assurances du groupe BNP Paribas, et ING Bank pour manquement dans leur dispositif de lutte contre le blanchiment et le financement du terrorisme (LCB-FT).

Pourtant, ces établissements ont massivement investi pour renforcer leur dispositif antiblanchiment, 32 millions d’euros pour Cardif depuis 2016, 26 millions d’euros entre 2019 et 2020 pour ING Bank. Pour quels résultats ? Comme l’indique l’ancien directeur d’Europol, Rob Wainwright, « on a créé une tonne de réglementation, les banques dépensent 20 milliards d’euros par an (…) et [pourtant] on ne saisit que 1 % du produit de la criminalité chaque année en Europe ».


Si l’objectif du dispositif est d’assécher les réseaux internationaux de financement du crime, le bilan de la lutte contre le blanchiment est, au mieux, mitigé. La plupart des alertes générées par les outils informatiques des institutions financières sont des « faux positifs » devant être triés par des opérateurs humains. Ce tri effectué, les suspicions restantes sont transmises aux autorités publiques sous la forme de « déclarations de soupçon », dont peu font l’objet d’une enquête.

Présence d’obstacles réglementaires

A l’origine, la LCB-FT était faite pour traquer la criminalité grave : crime organisé, trafic d’êtres humains, cartels de drogue… Mais son champ d’application a progressivement été étendu, avec pour résultat une multiplication des signalements de soupçon couvrant des délits plus mineurs (travail au noir, fraudes fiscales…).

Idéalement, les dispositifs de détection des banques devraient se focaliser sur les réseaux de criminalité les plus importants, ce qui nécessiterait un bon alignement entre les objectifs des outils de LCB-FT adoptés par les établissements et les principales menaces identifiées par l’Etat. En se dotant d’outils d’intelligence artificielle (IA) ciblant les transactions suspectes évocatrices des principales menaces listées, l’efficacité des dispositifs LCB-FT serait encore renforcée.


En l’état, le partage des informations entre les autorités de lutte contre la criminalité financière (Tracfin en France) et les établissements financiers se heurte à des obstacles réglementaires – protection des données personnelles, secret de l’enquête voire, dans certains cas, secret-défense.

L’intelligence artificielle, une chance pour l’Europe ?

 L’intelligence artificielle, une chance pour l’Europe ?

Tribune de Pierre-Etienne Bardin et Guillaume Leboucher* dans l’Opinion 

 

La crise sanitaire a montré l’obligation pour les entreprises de se transformer et pour les citoyens d’être formés et accompagnés dans un monde de plus en plus technologique. Nulle organisation, publique comme privée, ne semble devoir échapper à son destin numérique. Alors, autant le prendre en main.

La maîtrise des données et leur exploitation, notamment par des techniques d’intelligence artificielle (IA), s’avèrent comme le plus sûr moyen de rester dans la course économique, politique et géostratégique. L’IA est un outil de transformation majeur, nécessaire et indispensable, pour rebondir et saisir les opportunités économiques qui se présentent.

Grâce aux gains de productivité et à la relance de la consommation, l’IA contribuera de plus en plus à la croissance. Les entreprises ayant une culture de la donnée voient jusqu’à 5 % d’augmentation de leur valeur selon le Data Literacy index.

Technologie complexe, de plus en plus prédictive, l’IA simplifie la tâche des salariés. Elle s’immisce dans tous les pans de l’activité. Elle est tour à tour auxiliaire de santé, pour prévenir l’évolution d’un virus, ou de justice, pour fournir une analyse de jurisprudences exhaustive par exemple. Présente au quotidien, elle rend des voitures de plus en plus autonomes, des transactions financières plus fluides et rapides, des gestions logistiques et de livraisons plus affinées, des procédures de contrôles renforcées, des compteurs électriques intelligents, etc. Sans parler de nos smartphones qui répondent à l’œil et à la voix.

Tout en veillant à ne pas brider l’innovation, l’affirmation d’une base juridique doit constituer une occasion de renforcer le cadre de confiance dans la technologie

Déclassement. Dans le match de superpuissances numériques que les Etats-Unis et l’Asie ont installé, l’Europe et ses entreprises risquent le déclassement si l’IA ne devient pas un élément central de leurs stratégies. La commission européenne vient d’annoncer sa volonté de réglementer le marché de l’IA. Tout en veillant à ne pas brider l’innovation, l’affirmation d’une base juridique doit constituer une occasion de renforcer le cadre de confiance dans la technologie.

C’est aussi pour l’Europe une occasion d’affirmer un peu plus encore ses valeurs de respect de la dignité humaine et de droit de la propriété intellectuelle en particulier. Un modèle alternatif de développement du numérique, ouvert et pérenne, respectueux des humains et leurs données, est possible. Le projet GAIA-X en constitue une parfaite illustration.

Face à la domination des géants du numérique (Google, Amazon, Microsoft) qui concentrent deux tiers d’un marché de l’hébergement des données qui a triplé ces trois dernières années, la création d’un champion européen en tous points égaux serait vouée à l’échec. Au contraire, GAIA-X offre un cadre de référence et une labellisation pour permettre le développement d’une infrastructure de données déconcentrée et référente.

Fer de lance. Etre souverain, ce n’est pas se replier sur soi-même mais reprendre le dessus sur le cours des choses. L’Europe, avec la France comme fer de lance, peut et doit mobiliser ses talents autour de grands projets à visage humain et à géométrie variable mêlant les compétences et l’ambition, les savoirs et les savoir-faire.

Pour servir une telle ambition, les grands groupes doivent pouvoir s’inspirer de l’agilité des jeunes poussent, lesquels y trouveront à leur tour les moyens d’innover tout en les aiguillonnant.

C’est le sens du rapprochement du Groupe La Poste avec Openvalue, expert reconnu de l’IA, pour accompagner les organisations dans l’amélioration de leur performance industrielle. La France a besoin d’acteurs majeurs de la transformation de l’économie alliant le crédit et la confiance d’opérateurs de services aux publics. Notre continent est aussi une terre d’innovation et d’entrepreneurs.

*Pierre-Etienne Bardin, chief data officer du Groupe La Poste, et Guillaume Leboucher, fondateur et directeur général d’OpenValue.

Santé: l’intelligence artificielle pour voir l’invisible ?

Santé: l’intelligence artificielle pour voir l’invisible ?

 

« Une équipe de scientifiques a élaboré un nouveau type d’algorithme capable d’identifier un cancer au stade initial de son développement », imagine Aurélie Jean, docteure en Sciences et Entrepreneure, CAIO et co-fondatrice de DpeeX, CEO et fondatrice de In Silico Veritas ( dans l’Opinion)

  Une innovation à l’intersection entre la médecine et la modélisation numérique ouvre des perspectives thérapeutiques uniques en oncologie, raconte Aurélie Jean qui, avec 50 autres personnalités, a imaginé à quoi ressemblerait l’actualité du n° 3000 de l’Opinion, en avril 2025.

Depuis plusieurs décennies, l’intelligence artificielle (IA) est utilisée pour confirmer la présence de tumeurs sur des scanners cérébraux, des radiographies pulmonaires ou des mammographies. Depuis quelques années, l’IA est utilisée dans la médecine dite prédictive dont l’objectif est d’anticiper et d’évaluer les risques de survenue d’une maladie ou la probabilité de succès d’un traitement. Durant la pandémie de Covid-19, lointain souvenir aujourd’hui, le grand public a eu l’occasion de découvrir les capacités de l’IA à contribuer à l’élaboration d’un vaccin en identifiant par simulation numérique la protéine capable de l’activer. Ce même public découvre à présent sa capacité à voir l’invisible…

Une équipe de scientifiques et de médecins a élaboré un nouveau type d’algorithme capable d’identifier un cancer au stade initial de son développement, bien avant qu’on ne puisse visualiser la tumeur à l’œil nu sur une image radiologique. En pratique, cet algorithme détecte et localise le cancer au début de sa phase de croissance, en capturant les signaux faibles de sa signature tumorale, plus de deux ans avant le stade du diagnostic radiologique.

Détection. Pour la première fois en cancérologie, voir et traiter l’invisible devient possible. La détection précoce d’un cancer augmente significativement les chances de survie et permet l’utilisation de traitements ciblés moins agressifs, cette innovation à l’intersection entre la médecine et la modélisation numérique ouvre des perspectives thérapeutiques uniques en oncologie.

La technologie est aujourd’hui utilisée dans le diagnostic et le traitement de nombreux cancers tels que le cancer du sein et du poumon, parmi les plus fréquents. Les acteurs de cette invention comptent bien en élargir les applications pour un jour « éradiquer les traitements lourds et coûteux tant financièrement qu’émotionnellement, pour offrir à chaque être humain de ce monde les mêmes chances de survie face au cancer ».

L’intelligence artificielle pour des prévisions Météo plus pointues

L’intelligence artificielle pour des prévisions Météo plus pointues

 

Un article du Wall Street Journal

 

Les Etats-Unis ont connu 22 catastrophes météorologiques et climatiques en 2020 – un nombre record. L’intelligence artificielle semble capable de déterminer avec une plus grande précision l’évolution des intempéries telles que les chutes de grêle ou les tornades.

 

 

Amy McGovern fait partie des rares personnes à avoir déménagé en Oklahoma pour des raisons météorologiques.

Non pas qu’elle apprécie particulièrement les tornades qui s’abattent sur cet Etat à intervalles réguliers, ni les chutes de grêle qui s’apparentent souvent à un déluge de balles de golf. « J’en suis à mon troisième toit en quinze ans », raconte-t-elle en riant.

Mais c’est bien en raison de ces violentes intempéries qu’elle s’est installée ici : informaticienne initialement formée à la robotique, elle a été recrutée par l’école de météorologie de l’Université de l’Oklahoma. A l’automne dernier, disposant d’un financement de 20 millions de dollars de la National Science Foundation, elle a ouvert l’un des premiers instituts nationaux dédiés à l’application de l’intelligence artificielle à la météo et au climat. A l’heure où les nouvelles technologies d’apprentissage automatique deviennent omniprésentes et produisent des résultats étonnants dans la reconnaissance faciale ou la rédaction de textes, le centre de Mme McGovern prend part à une nouvelle initiative visant à déterminer si ces techniques peuvent aussi prévoir l’évolution de la météo.

Selon les modélisateurs, la récente vague de froid qui a détruit des infrastructures et perturbé les chaînes d’approvisionnement au Texas aura coûté à elle seule 90 milliards de dollars

L’institut de Mme McGovern bénéficie de la participation de six autres universités et divers acteurs du secteur privé. Développant des méthodes d’intelligence artificielle pour améliorer les prévisions en matière d’événements climatiques extrêmes et d’océanographie côtière, l’institut veille à ce que les instruments qu’il met au point soient fiables du point de vue des prévisionnistes qui en seront les utilisateurs. « Nous travaillons sur le cycle dans son ensemble, explique Mme McGovern. Il s’agit de sauver des vies et des biens. »

L’intelligence artificielle, qui permet déjà d’accroître l’efficacité des méthodes de prévisions existantes et contribue à en augmenter la rapidité et l’exactitude, semble capable de déterminer avec une plus grande précision l’évolution des intempéries telles que les chutes de grêle ou les tornades. Elle ne remplacera pas les prévisions météorologiques classiques mais renforcera et développera les méthodes actuelles.

Une meilleure efficacité

Des prévisions plus précises et une meilleure préparation aux intempéries apportent des bénéfices considérables. Selon la National Oceanic and Atmospheric Administration, les Etats-Unis ont connu 22 catastrophes météorologiques et climatiques en 2020 – un nombre record – et les dommages causés par chacune d’entre elles ont atteint plus d’un milliard de dollars. Selon les modélisateurs, la récente vague de froid qui a détruit des infrastructures et perturbé les chaînes d’approvisionnement au Texas aura coûté à elle seule 90 milliards de dollars. Et si les prévisions se sont améliorées au fil du temps, elles sont encore loin d’être exhaustives. Selon Mme McGovern, les services gouvernementaux parviennent assez bien à donner l’alerte avant l’arrivée des tornades (anticipant 80 % d’entre elles), mais leurs prévisions comptent de nombreux faux positifs (80 % se révélant erronées).

L’ère moderne des prévisions météorologiques s’est ouverte dans les années 1950 et depuis lors, les spécialistes ont avant tout fait appel à des « prévisions numériques », c’est-à-dire des modèles mathématiques qui simulent l’état du monde et de l’atmosphère en fonction des paramètres physiques de l’eau, du vent, des sols et de la lumière du soleil, lesquels interagissent de multiples manières. Cherchant à intégrer toujours davantage de paramètres, les modèles actuels traitent une centaine de millions de données chaque jour, un niveau de complexité comparable aux simulations du cerveau humain ou de la naissance de l’univers.

Durant des décennies, ces modèles ont permis des progrès réguliers en termes d’exactitude des prévisions. Ces dernières années cependant, la multiplication des satellites d’observation terrestre et l’apparition de nouveaux capteurs, comme les outils de mesure de la pression atmosphérique présents dans des milliards de téléphones portables, ont dépassé la capacité des scientifiques à les intégrer dans leurs modèles météorologiques. Et le traitement d’une seule fraction de ces données a nécessité une augmentation exponentielle de la puissance de calcul utilisée pour réaliser des prévisions précises.

Les dernières technologies d’intelligence artificielle fonctionnent de manière totalement différente des techniques antérieures, en « entraînant » des réseaux neuronaux à l’aide de ce déluge de données plutôt qu’au moyen des lois de la physique. Au lieu de recourir à des calculs exhaustifs pour prévoir l’évolution météorologique sur la base des conditions actuelles, ces réseaux passent en revue les données relatives aux conditions passées et développent leur propre compréhension de l’évolution du temps. Des techniques rudimentaires d’intelligence artificielle sont appliquées aux domaines météorologique et climatique depuis des années – la première conférence sur l’intelligence artificielle parrainée par la National Oceanic and Atmospheric Administration remonte à 1986 – mais les récentes avancées de l’apprentissage profond, de même qu’un meilleur accès aux ordinateurs capables de l’exécuter, se sont traduits par une augmentation rapide de la recherche.

Les prévisions météorologiques actuelles consomment déjà une telle puissance de calcul qu’elles nécessitent l’utilisation des ordinateurs les plus rapides au monde, et les scientifiques s’emploient en permanence à en repousser les limites

L’intelligence artificielle n’est pas utilisée, du moins à ce stade, pour produire seule des prévisions. De fait, les méthodes classiques sont assez performantes : deux semaines avant la vague de froid qui s’est abattue mi-février sur le Texas, le bureau des services météorologiques nationaux de Fort Worth avait prédit des températures inhabituellement basses, et une semaine avant les intempéries, de nombreux modèles en avaient évalué l’intensité à quelques degrés près. Ted Ryan, un météorologue de Fort Worth, explique que les équipes locales recourent parfois à des prévisions produites par un algorithme sophistiqué d’apprentissage automatique afin de déterminer si les résultats sont très différents des prévisions humaines, mais l’utilisation de cet outil ne fait pas partie de leur travail de prévision et de communication quotidien. Il classe l’algorithme « quelque part entre une curiosité et une nouveauté ».

Une autre difficulté posée par l’intelligence artificielle est qu’elle est particulièrement efficace pour prédire des scénarios figurant couramment dans les données qui servent à son développement ; or, les conditions météorologiques importent justement lorsqu’elles sortent de l’ordinaire – comme la vague de froid au Texas, où les températures n’avaient pas été aussi basses depuis 1899.

Ce n’est pas parce que ces nouvelles techniques n’ont pas encore remplacé les méthodes classiques de prévision qu’elles ne vont pas rapidement affecter ces dernières. Les prévisions météorologiques actuelles consomment déjà une telle puissance de calcul qu’elles nécessitent l’utilisation des ordinateurs les plus rapides au monde, et les scientifiques s’emploient en permanence à en repousser les limites. Les techniques d’apprentissage automatique peuvent réduire l’utilisation d’énergie en imitant en partie les modèles météorologiques mondiaux à l’aide de calculs plus simples et moins consommateurs d’électricité – et avec des résultats assez proches en termes de précision.

Sid Boukabara, responsable scientifique au centre d’applications et de recherches satellitaires de la National Oceanic and Atmospheric Administration, estime que les bénéfices seront importants : « Dans le cas de certains composants, l’efficacité pourrait être de 10 à 1 000 fois supérieure. » Il est toutefois trop tôt pour savoir à quel point l’exactitude des prévisions numériques en sera améliorée.

De son côté, le Centre européen pour les prévisions météorologiques à moyen terme effectue actuellement une simulation du globe terrestre sous la forme d’une grille composée de carrés de 9 kilomètres de côté, empilés sur 137 « étages » dans l’atmosphère. Le directeur adjoint du Centre, Peter Bauer, explique que chaque degré de précision supplémentaire entraîne une augmentation exponentielle de l’utilisation d’électricité : le nouveau superordinateur du Centre à Bologne, en Italie, consommera autant d’électricité que 6 000 foyers. Ses collègues et lui s’approchent rapidement des limites de ce qu’ils peuvent dépenser, ou justifier, indique M. Bauer.

Cette année, en faisant appel aux méthodes de l’intelligence artificielle pour améliorer son efficacité, le Centre commencera à élaborer un nouveau modèle mondial, avec une résolution de 1 kilomètre, qui permettra de mieux cerner les tempêtes et tourbillons océaniques, précise M. Bauer. « Des machines plus grosses et plus rapides nous apportent une puissance de calcul toujours plus importante, mais il faut que nous changions radicalement les codes que nous utilisons pour garantir l’efficacité d’usage. »

Des prévisions plus localisées

Les chercheurs jugent l’intelligence artificielle prometteuse dans des applications plus circonscrites, par exemple l’utilisation de l’apprentissage automatique pour produire des prévisions très localisées, plus utiles pour le public destinataire. Les meilleurs modèles météorologiques mondiaux eux-mêmes ont une résolution spatiale de plusieurs kilomètres : s’ils peuvent prévoir avec exactitude le temps qu’il va faire dans un département, ils sont moins à même de le faire pour un quartier. Selon les chercheurs, l’apprentissage profond pourrait permettre de réduire l’échelle géographique et de produire des prévisions plus détaillées, à la manière de ce qui s’est passé dans le domaine de la photographie. L’apprentissage profond complète les prévisions météorologiques issues des méthodes classiques à l’aide d’informations comme la topographie, de façon à déterminer la manière dont des tendances générales se traduiront dans certains lieux en particulier.

L’apprentissage automatique pourrait aussi s’avérer crucial pour l’établissement de prévisions immédiates précises, qui impliquent des calculs rapides hors de portée des méthodes classiques. Au printemps dernier, deux scientifiques de Google Research ont montré que des réseaux neuronaux profonds qui n’avaient fait l’objet d’aucun encodage explicite des lois physiques pouvaient prévoir les précipitations dans les huit heures à venir de manière plus performante que d’autres modèles de pointe. L’un d’eux, Nal Kalchbrenner, explique qu’ils cherchaient à accroître la qualité et la durée des prévisions. « Cela ouvre la voie à une utilisation à grande échelle de l’intelligence artificielle dans le domaine des sciences météorologiques et climatiques. »

Gouvernements et grandes entreprises sont conscients du potentiel de l’intelligence artificielle. En octobre dernier, la National Oceanic and Atmospheric Administration et Google ont annoncé un partenariat visant à étudier comment l’apprentissage automatique pouvait aider l’agence à utiliser de façon plus efficace les données satellitaires et environnementales

Obtenir des prévisions précises ne serait-ce qu’une ou deux heures plus tôt pourrait avoir des conséquences considérables pour les entreprises, qui ne sont pas exposées aux mêmes risques que les particuliers. « Si vous entendez qu’il va y avoir de la grêle, vous pouvez rapidement rentrer votre voiture au garage, explique Mme McGovern. Mais pour un constructeur ou concessionnaire automobile avec 1 000 voitures à l’extérieur, cela prend beaucoup plus de temps. » L’an dernier, elle a co-écrit une étude montrant que l’apprentissage automatique améliorait les prévisions à court terme relatives aux averses de grêle, compensant le nombre limité de données mondiales par l’analyse de milliers de rapports de tempêtes de grêle localisées. Mme McGovern travaille actuellement avec la National Oceanic and Atmospheric Administration à l’élaboration d’une solution opérationnelle fondée sur cette technique.

Gouvernements et grandes entreprises sont conscients du potentiel de l’intelligence artificielle. En octobre dernier, la National Oceanic and Atmospheric Administration et Google ont annoncé un partenariat visant à étudier comment l’apprentissage automatique pouvait aider l’agence à utiliser de façon plus efficace les données satellitaires et environnementales. En janvier, le National Center for Atmospheric Research a investi 35 millions de dollars dans un nouveau superordinateur mieux équipé pour supporter les dernières technologies d’intelligence artificielle. Et la National Oceanic and Atmospheric Administration tout comme le Centre européen ont récemment annoncé des stratégies d’intégration de l’intelligence artificielle dans leurs travaux.

Certains chercheurs de premier plan, prudents quant à l’engouement actuel pour tout ce qui touche à l’intelligence artificielle, soulignent qu’il ne faut pas tout attendre de ces technologies. L’un d’eux, Stephan Rasp, n’y est pas opposé : il a co-écrit l’une des premières études montrant que l’intelligence artificielle pouvait imiter de manière efficace une partie du travail de prévision, et le nom de la start-up qui l’emploie en tant qu’expert en mégadonnées – Climate.ai – fait directement référence à cette technologie. Le chercheur note toutefois qu’une grande part des recherches en sont encore au stade de la démonstration de faisabilité ; si l’application de l’intelligence artificielle à des séries de données simplifiées a été concluante, il existe encore peu d’exemples d’amélioration effective des prévisions météorologiques et climatiques.

Dans ce domaine, il estime qu’il pourrait falloir dix ans pour déterminer où l’intelligence artificielle peut être utile ou non. « Lorsque l’on dispose d’un marteau, on tend à considérer tous les problèmes comme des clous. J’ai l’impression que c’est ce qu’il se passe en ce moment. »

(Traduit à partir de la version originale en anglais par Anne Montanaro)

Des dangers potentiels de l’intelligence artificielle

 Des dangers potentiels de l’intelligence artificielle

Le cabinet d’études McKinsey constate le manque manifeste de diligence de certaines entreprises concernant les risques liés à l’IA, notamment sur les questions de conformité et de protection de la vie privée

 

Tribune

Pour que les entreprises puissent réduire les dangers potentiels résultants de leurs projets dans l’intelligence artificielle, elles doivent d’abord admettre l’existence de risques liés à l’adoption de cette technologie. Les récentes conclusions de la société de conseil McKinsey montrent que de nombreuses entreprises sont en retard sur ces deux points.

La pandémie a accéléré l’adoption de l’intelligence artificielle : les entreprises trouvent dans cette technologie des opportunités pour repenser leurs processus opérationnels et leurs business models. Mais la mise en œuvre de l’IA s’accompagne de risques potentiels. Par exemple, un modèle conçu pour accélérer la procédure d’attribution de prêts hypothécaires pourrait se révéler partial, en discriminant une certaine catégorie de la population, et les entreprises qui n’identifient pas correctement les données puis n’excluent pas celles revêtant un caractère personnel au sein des grands volumes de données utilisés dans les projets d’IA pourraient écoper d’amendes en vertu du Règlement général sur la protection des données (RGPD) européen.

Une récente enquête de McKinsey révèle que moins de la moitié des personnes interrogées dont les entreprises utilisent l’IA identifient ces risques — notamment ceux liés à la conformité réglementaire et au respect de la vie privée — comme « pertinents » concernant leurs projets d’IA. Seul le risque relevant de questions de cybersécurité est considéré comme pertinent par plus de la moitié des personnes interrogées.

La société de conseil en gestion déclare trouver ces résultats, publiés à la mi-novembre, préoccupants.

« Il est difficile de comprendre pourquoi les risques systématiques ne sont pas identifiés par une proportion beaucoup plus élevée de répondants », écrit Roger Burkhardt, partner chez McKinsey, dans une note publiée avec les résultats.

Près de 2 400 cadres et dirigeants, évoluant dans des secteurs variés et des entreprises de tailles différentes ont répondu à cette enquête internationale, menée au mois de en juin. Environ 1 150 ont déclaré que leur société avait déjà adopté l’IA dans au moins une de ses missions. La société de conseil a demandé à ces entreprises quels risques elles considéraient comme pertinents et quel type de risques elles essayaient concrètement de traiter ou de réduire.

Sur les répondants, 38 % affirment s’efforcer de limiter les risques en matière de conformité réglementaire et 30 % assurent qu’ils travaillent pour diminuer ceux liés au respect de la vie privée, ce qui représente, pour ces deux sujets, des pourcentages légèrement supérieurs à ceux enregistrés dans une enquête similaire réalisée par McKinsey en 2019.

Michael Chui, partner chez McKinsey Global Institute, la branche de la société spécialisée dans la recherche économique et le monde de l’entreprise, explique que la société de conseil ne donnait pas de définition des termes « pertinent » ou « risque » aux personnes interrogées. Il fait également remarquer que tous les risques ne concernent pas toutes les entreprises. Par exemple, les questions de sécurité physique des personnes vont probablement être moins importantes pour une société de services financiers que pour une entreprise de robotique.

Néanmoins, la plupart des entreprises sont concernées par un grand nombre des dix risques générés par l’IA qu’aborde l’enquête, précise-t-il. Il souligne que, si une entreprise ne considère pas un risque comme pertinent, elle ne va probablement pas chercher à en limiter la portée.

Bruce Ross, responsable groupe des services technologie et opérations de la Royal Bank of Canada, est surpris de constater que les sociétés ne sont pas plus nombreuses à se préoccuper des risques liés à l’IA tournant autour du respect de la vie privée et de la réputation de l’entreprise.

La banque, basée à Toronto, utilise notamment l’IA dans le cadre de la détection des fraudes, de l’analyse des risques, et des opérations sur les marchés de capitaux. Parlant des établissements financiers, il explique que, si des systèmes d’intelligence artificielle prennent des décisions, la conformité réglementaire et la cybersécurité deviennent alors des domaines générant des risques importants qui doivent être traités. « Les banques négocient sur la base de la confiance », rappelle-t-il.

L’un des principaux obstacles à l’évaluation et à la limitation des risques est tout simplement la prise de conscience de leur existence, précise M. Chui, de chez McKinsey. Les personnes qui mettent en œuvre des systèmes d’IA sont focalisées sur des objectifs commerciaux, comme l’augmentation des ventes ou la réduction du taux de résiliations, précise-t-il. Elles sont donc susceptibles de ne pas pleinement admettre les risques résultant de cette technologie.

Zico Kolter, directeur scientifique des recherches sur l’IA au Bosch Center for Artificial Intelligence de Bosch et professeur associé à l’Ecole de science informatique de l’Université Carnegie-Mellon, le confirme. « Comme les entreprises se précipitent pour adopter cette nouvelle technologie afin de conserver leur longueur d’avance, il existe toujours un risque d’ignorer certains de ses inconvénients », assure-t-il.

Le travail de Bosch en matière d’IA couvre ses gammes de produits de détection intelligente, comme les capteurs et les caméras permettant aux systèmes de conduite autonomes de reconnaître les panneaux de signalisation. Pour limiter l’ensemble des risques en matière de sécurité, la société fait des recherches sur différents procédés, dont une technique appelée « adversarial training ». Elle consiste à apprendre à un système d’IA analysant les objets à les reconnaître en utilisant les scénarios les plus défavorables. Cela permet au système d’obtenir de bons résultats, même s’il est soumis à une éventuelle attaque.

M. Chui indique que les entreprises peuvent prendre des mesures pour accroître la sensibilisation et réduire les risques, par exemple en recrutant des personnes disposant de compétences variées dans leurs différents services afin de les évaluer et de les diminuer.

Olly Downs, vice-président du marketing, de la technologie, des données et de l’apprentissage automatique chez le détaillant en ligne Zulily, affirme que son équipe rencontre notamment des cadres de la technologie, du marketing, de la chaîne d’approvisionnement et du service juridique pour mener son évaluation mensuelle des activités concernant les projets d’IA. Elle organise également des réunions régulières où toute l’entreprise discute des projets impliquant l’IA.

M. Chui, de McKinsey, s’attend à ce que les entreprises accordent plus d’attention, à la fois, aux risques liés à l’IA et à leur limitation à un moment où elles intègrent l’usage de cette technologie. « Prévoit-on que ces risques vont augmenter avec le temps ? Oui, clairement », conclut-il.

 

L’intelligence artificielle: un outil de lutte contre les situations oligopolistiques

L’intelligence artificielle: un outil de lutte contre les situations oligopolistiques

Le juriste Thibault Schrepel présente, dans une tribune au « Monde », les avantages des nouveaux outils informatiques pour traquer abus de position dominante, collusions algorithmiques ou agissements illégaux des géants du numérique.

Tribune. Chaque nouvelle semaine révèle son lot de nouvelles affaires en droit de la concurrence. Ces derniers mois, Amazon, Apple, Facebook, Google – qui vient d’être condamné, mercredi 10 février, à 1 million d’euros d’amende par le tribunal de commerce de Paris pour abus de position dominante dans la publicité –, et bien d’autres encore ont fait l’objet de nouvelles procédures et allégations.

Bien souvent, ces entreprises sont accusées d’avoir manipulé leurs produits et services de sorte à diminuer la pression concurrentielle. Dans le même temps, les autorités de concurrence expriment des difficultés croissantes à détecter et analyser ces pratiques. Il faut dire que les stratégies des entreprises du numérique se complexifient au fur et à mesure des avancées technologiques.

Face à ce constat, la Commission européenne veut faire le pari d’introduire des mesures ex ante dont l’objectif est de prévenir la mise en œuvre de pratiques anticoncurrentielles. Le Digital Markets Act (DMA) présenté le 15 décembre 2020 par les commissaires européens Margrethe Vestager et Thierry Breton relève de cette logique. Il s’adresse aux grandes entreprises du numérique et vise à interdire de nombreux comportements listés aux articles 5 et 6.

Par exemple, la Commission veut empêcher « l’auto-préférencement » (par lequel une entreprise met en avant l’un de ses produits sur sa propre plate-forme). Elle entend également interdire l’utilisation des données personnelles provenant d’un service développé par ces entreprises pour en modifier un autre, que ce soit ou non pour l’améliorer.

Dans le préambule du DMA, la Commission dit avoir suffisamment d’expérience pour établir une liste de pratiques qui n’interdise que celles qui sont néfastes. Toutefois, les pratiques d’auto-préférencement n’ont fait l’objet que d’une seule décision au niveau européen. C’était en 2017 dans l’affaire Google Shopping. Les pratiques d’association des données font quant à elles l’objet d’une enquête en cours contre Amazon. Il s’agit de la première du genre.

Aucune de ces affaires n’a logiquement fait l’objet d’un arrêt par la Cour de justice de l’Union européenne. Enfin, relevons qu’il existe des situations dans lesquelles ces pratiques, bien que généralement anticoncurrentielles, peuvent bénéficier au consommateur.

Ces géants de la tech pourraient, par exemple, utiliser leurs plates-formes et leurs agrégateurs afin de promouvoir de nouveaux produits dans les secteurs de l’automobile, des télécoms ou de la banque. Le DMA pourrait compliquer ces entrées sur le marché. En établissant une liste définitive, la Commission risque de graver dans le marbre l’interdiction de certaines stratégies qui contribuent parfois à l’innovation.

Les dangers potentiels de l’intelligence artificielle

Les  dangers potentiels de l’intelligence artificielle

McKinsey constate le manque manifeste de diligence de certaines entreprises concernant les risques liés à l’IA, notamment sur les questions de conformité et de protection de la vie privée(article de John McCormick dans le Wall Street Journal repris dans l’Opinion)

 

Le siège de l’entreprise allemande Bosch, à Stuttgart.

 

Pour que les entreprises puissent réduire les dangers potentiels résultants de leurs projets dans l’intelligence artificielle, elles doivent d’abord admettre l’existence de risques liés à l’adoption de cette technologie. Les récentes conclusions de la société de conseil McKinsey montrent que de nombreuses entreprises sont en retard sur ces deux points.

La pandémie a accéléré l’adoption de l’intelligence artificielle : les entreprises trouvent dans cette technologie des opportunités pour repenser leurs processus opérationnels et leurs business models. Mais la mise en œuvre de l’IA s’accompagne de risques potentiels. Par exemple, un modèle conçu pour accélérer la procédure d’attribution de prêts hypothécaires pourrait se révéler partial, en discriminant une certaine catégorie de la population, et les entreprises qui n’identifient pas correctement les données puis n’excluent pas celles revêtant un caractère personnel au sein des grands volumes de données utilisés dans les projets d’IA pourraient écoper d’amendes en vertu du Règlement général sur la protection des données (RGPD) européen.

Une récente enquête de McKinsey révèle que moins de la moitié des personnes interrogées dont les entreprises utilisent l’IA identifient ces risques — notamment ceux liés à la conformité réglementaire et au respect de la vie privée — comme « pertinents » concernant leurs projets d’IA. Seul le risque relevant de questions de cybersécurité est considéré comme pertinent par plus de la moitié des personnes interrogées.

La société de conseil en gestion déclare trouver ces résultats, publiés à la mi-novembre, préoccupants.

« Il est difficile de comprendre pourquoi les risques systématiques ne sont pas identifiés par une proportion beaucoup plus élevée de répondants », écrit Roger Burkhardt, partner chez McKinsey, dans une note publiée avec les résultats.

Près de 2 400 cadres et dirigeants, évoluant dans des secteurs variés et des entreprises de tailles différentes ont répondu à cette enquête internationale, menée au mois de en juin. Environ 1 150 ont déclaré que leur société avait déjà adopté l’IA dans au moins une de ses missions. La société de conseil a demandé à ces entreprises quels risques elles considéraient comme pertinents et quel type de risques elles essayaient concrètement de traiter ou de réduire.

Sur les répondants, 38 % affirment s’efforcer de limiter les risques en matière de conformité réglementaire et 30 % assurent qu’ils travaillent pour diminuer ceux liés au respect de la vie privée, ce qui représente, pour ces deux sujets, des pourcentages légèrement supérieurs à ceux enregistrés dans une enquête similaire réalisée par McKinsey en 2019.

Michael Chui, partner chez McKinsey Global Institute, la filiale de la société spécialisée dans la recherche économique et le monde de l’entreprise, explique que la société de conseil ne donnait pas de définition des termes « pertinent » ou « risque » aux personnes interrogées. Il fait également remarquer que tous les risques ne concernent pas toutes les entreprises. Par exemple, les questions de sécurité physique des personnes vont probablement être moins importantes pour une société de services financiers que pour une entreprise de robotique.

Néanmoins, la plupart des entreprises sont concernées par un grand nombre des dix risques générés par l’IA qu’aborde l’enquête, précise-t-il. Il souligne que, si une entreprise ne considère pas un risque comme pertinent, elle ne va probablement pas chercher à en limiter la portée.

Bruce Ross, responsable groupe des services technologie et opérations de la Royal Bank of Canada, est surpris de constater que les sociétés ne sont pas plus nombreuses à se préoccuper des risques liés à l’IA tournant autour du respect de la vie privée et de la réputation de l’entreprise.

La banque, basée à Toronto, utilise notamment l’IA dans le cadre de la détection des fraudes, de l’analyse des risques, et des opérations sur les marchés de capitaux. Parlant des établissements financiers, il explique que, si des systèmes d’intelligence artificielle prennent des décisions, la conformité réglementaire et la cybersécurité deviennent alors des domaines générant des risques importants qui doivent être traités. « Les banques négocient sur la base de la confiance », rappelle-t-il.

L’un des principaux obstacles à l’évaluation et à la limitation des risques est tout simplement la prise de conscience de leur existence, précise M. Chui, de chez McKinsey. Les personnes qui mettent en œuvre des systèmes d’IA sont focalisées sur des objectifs commerciaux, comme l’augmentation des ventes ou la réduction du niveau des résiliations, précise-t-il. Elles sont donc susceptibles de ne pas pleinement admettre les risques résultant de cette technologie.

Zico Kolter, directeur scientifique des recherches sur l’IA au Bosch Center for Artificial Intelligence de Bosch et professeur associé à l’Ecole de science informatique de l’Université Carnegie-Mellon, le confirme. « Comme les entreprises se précipitent pour adopter cette nouvelle technologie afin de conserver leur longueur d’avance, il existe toujours le risque d’ignorer certains de ses inconvénients », assure-t-il.

Le travail de Bosch en matière d’IA couvre ses gammes de produits de détection intelligente, comme les capteurs et les caméras permettant aux systèmes de conduite autonomes de reconnaître les panneaux de signalisation. Pour limiter l’ensemble des risques en matière de sécurité, la société fait des recherches sur différents procédés, dont une technique appelée « adversarial training ». Elle consiste à apprendre à un système d’IA analysant les objets à les reconnaître en utilisant les scénarios les plus défavorables. Cela permet au système d’obtenir de bons résultats même s’il est soumis à une éventuelle attaque.

M. Chui indique que les entreprises peuvent prendre des mesures pour accroître la sensibilisation et réduire les risques, par exemple en recrutant des personnes disposant de compétences variées dans leurs différents services afin de les évaluer et de les diminuer.

Olly Downs, vice-président du marketing, de la technologie, des données et de l’apprentissage automatique chez le détaillant en ligne Zulily, affirme que son équipe rencontre notamment des cadres de la technologie, du marketing, de la chaîne d’approvisionnement et du service juridique pour mener son évaluation mensuelle des activités concernant les projets d’IA. Elle organise également des réunions régulières où toute l’entreprise discute des projets impliquant l’IA.

M. Chui, de McKinsey, s’attend à ce que les entreprises accordent plus d’attention, à la fois, aux risques liés à l’IA et à leur limitation à un moment où elles intègrent l’usage de cette technologie. « Prévoit-on que ces risques vont augmenter avec le temps ? Oui, clairement », conclut-il.

Traduit à partir de la version originale en anglais

Comment mettre l’intelligence artificielle à grande échelle (Mohit Joshi)

 Comment mettre l’intelligence artificielle à grande échelle (Mohit Joshi)

 

Mohit Joshi, Président d’Infosys explique comment mettre en œuvre l’IA à grande échelle:  les entreprises doivent prendre soin de leurs talents internes, mettre l’éthique au premier plan et développer une stratégie à l’échelle de l’entreprise pour la technologie sur toute la chaîne de valeur( chronique de la Tribune)

 

Nous sommes fermement ancrés dans la cinquième révolution industrielle, une révolution basée sur l’intelligence artificielle (IA). Tout a commencé par l’ordinateur central, puis les ordinateurs personnels dans les années 1980, suivis par Internet, et enfin l’agilité et la puissance du cloud computing dans les années 2010. Cette cinquième vague informatique sera la plus retentissante à ce jour, avec des capacités qui promettent toujours plus d’initiatives et d’exploration humaines.

Toutefois, un problème se pose. Bien que l’IA soit adaptée aux entreprises, nombre d’entre elles ne parviennent pas à en tirer pleinement profit. L’innovation est tellement rapide que les entreprises n’arrivent pas à suivre le rythme. En 2015, les chercheurs ont publié 10.000 articles scientifiques sur l’IA. En 2019, ce chiffre est passé à 25 000 rien qu’aux États-Unis. Pour de nombreux dirigeants, cette situation est inquiétante, surtout lorsqu’on sait qu’une bonne utilisation de l’IA devrait améliorer les bénéfices de l’entreprise de 38 % et permettrait d’offrir 14 000 milliards de dollars de valeur ajouté aux entreprises d’ici 2035.

Il serait donc judicieux que les entreprises à la traîne tirent les enseignements des organisations plus avancées en matière d’IA. Dans notre étude, nous avons découvert que les leaders en matière d’IA plaçaient la technologie au cœur de leur activité et de leurs modèles d’exploitation. Ils l’utilisent pour découvrir, démocratiser et réduire les risques inhérents à l’utilisation de l’IA. Pour ces entreprises, l’IA fait partie intégrante de leur ADN et leur permet de proposer de meilleurs produits, d’améliorer l’expérience client et d’obtenir davantage de valeur ajoutée auprès de leur écosystème de partenaires.

À l’inverse, les entreprises ayant pris du retard utilisent principalement l’IA pour améliorer l’efficacité plutôt que pour changer la façon dont l’entreprise gagne de l’argent. Pour prendre une longueur d’avance, ces entreprises doivent requalifier les employés, s’assurer que l’adoption de l’IA n’est pas fragmentée, développer des cadres éthiques et de gouvernance solide, et informer les dirigeants des risques et opportunités liés à l’adoption de l’IA. Cela permettrait d’augmenter les marges opérationnelles d’au moins 3 %. Pour une entreprise de services financiers dont les revenus s’élèvent à 10 milliards de dollars, cela équivaut à 300 millions de dollars supplémentaires de revenus, ce qui n’est pas négligeable.

La plupart des talents en science des données se tournant vers les grandes entreprises technologiques, les entreprises de services financiers leaders en matière d’IA se démarquent par leur capacité à requalifier la main d’œuvre. Elles utilisent des plateformes numériques et des outils d’auto-modélisation pour garantir un apprentissage permanent. C’est crucial. Il est maintenant temps pour les entreprises de former leurs talents internes, c’est-à-dire ces employés qui connaissent parfaitement l’entreprise et qui peuvent repérer les cas d’utilisation pertinents pour l’IA plus rapidement que les nouveaux embauchés.

Il est également essentiel de réunir les équipes sous un seul et même cadre d’IA au sein de toute l’entreprise. En effet, des opérations d’IA réussies peuvent accroître les marges opérationnelles d’au moins 6 % (ce qui représente 600 millions de dollars supplémentaires pour une entreprise dont les revenus s’élèvent à 10 milliards de dollars). Ces entreprises visionnaires s’assurent généralement que les équipes commerciales, financières et technologiques travaillent ensemble sur les projets d’IA tout au long du cycle de vie de l’IA, le plus souvent via un centre d’excellence. Les employés sont formés plus rapidement, les bons processus de gestion des changements sont regroupés afin que les solutions d’IA évoluent rapidement du stade de pilote au stade du déploiement et que l’IA au sein de l’entreprise soit en mesure de répondre aux attentes.

 

Pour obtenir des résultats et développer l’intelligence à grande échelle, il est nécessaire de développer une vision globale de l’IA d’entreprise qui repose sur des plateformes d’IA professionnelles. En outre, en tirant profit du produit visionnaire, du domaine et de conseils d’experts, les entreprises sont assurées d’obtenir des bénéfices exponentiels au fil du temps.

Des cadres d’IA éthiques et de gouvernance solide doivent être établis dès le départ. Cela permet de garantir des déploiements d’IA justes, équitables et impartiaux. Nous avons constaté que ces entreprises qui ont défini ces cadres surpassent d’au moins 25 % les entreprises retardataires sur un certain nombre d’indicateurs de performance clés de l’entreprise. Toutefois, il n’est pas toujours évident d’éliminer toute déformation inconsciente de ces données. C’est ici que le mandat organisationnel pour des solutions d’IA efficaces et explicables intervient.

Les employés qui utilisent l’IA en back office ou avec les clients doivent rapidement être informés des pratiques éthiques. Les algorithmes d’apprentissage automatique doivent être en mesure d’expliquer les décisions qu’ils prennent, de façon à ce qu’elles soient comprises par les autorités d’IA, notamment les régulateurs. Sans ce pilier d’IA, des éthiques d’IA imparfaites peuvent ruiner la réputation d’une entreprise financière en un instant, auprès des partenaires et des consommateurs.

Enfin, les leaders de l’IA doivent connaître l’impact des technologies sur un certain nombre d’aspects, notamment le modèle commercial, les employés, les partenaires, les clients et la société dans son ensemble. De nombreux dirigeants rencontrent des difficultés dans ces domaines et n’ont qu’une vague idée de la façon dont l’IA peut améliorer les marges et leur permettre de devancer la concurrence. Si 2020 est l’année de l’IA, alors cela doit également être l’année au cours de laquelle les dirigeants des entreprises financières commencent leur apprentissage de l’IA.

L’IA étant présente dans tous les aspects de notre vie, le temps est venu pour les entreprises d’accélérer le mouvement vers des statuts d’IA visionnaires. De l’IA normatif utilisé dans les stratégies de fonds de roulement et la réduction du risque opérationnel au traitement du langage naturel utilisé pour extraire les attributs sensibles des contrats, les applications innovantes de l’IA améliorent les entreprises de services financiers et leur permettent d’être plus rapides et plus agiles.

Pour mettre en œuvre l’IA à grande échelle, les entreprises de services financiers doivent prendre soin de leurs talents internes, mettre l’éthique au premier plan et développer une stratégie à l’échelle de l’entreprise pour la technologie sur toute la chaîne de valeur. Ce faisant, nos clients seront les annonciateurs de la cinquième révolution industrielle.

 

12345



L'actu écologique |
bessay |
Mr. Sandro's Blog |
Unblog.fr | Annuaire | Signaler un abus | astucesquotidiennes
| MIEUX-ETRE
| louis crusol