Archive pour le Tag 'Fusion -'

Page 2 sur 6

Quel avenir pour la fusion nucléaire ?

Quel avenir pour la fusion nucléaire ?

La Russie va fournir pour le projet Iter de fusion nucléaire situé en France un énorme aimant.

La fusion nucléaire pourrait assez prochainement remplacer la fission nucléaire à laquelle on reproche surtout de produire des déchets pour l’instant impossible à recycler. par ailleurs es prochaines décennies sont d’une importance capitale pour la mise en place d’une stratégie de réduction des émissions de gaz à effet de serre.

D’ici la fin du siècle, compte tenu de la croissance démographique, de l’augmentation de l’urbanisation et de l’extension du réseau électrique dans les pays en développement, la demande en énergie aura triplé. Le recours aux combustibles fossiles qui ont modelé la civilisation industrielle est synonyme d’émission de gaz à effet de serre et de pollution.

Il est urgent de trouver une nouvelle source d’énergie à grande échelle, non émettrice de CO2, pérenne et disponible. La fusion offre les avantages suivants :

Une énergie abondante : A masse égale, la fusion d’atomes légers libère une énergie près de quatre millions de fois supérieure à celle d’une réaction chimique telle que la combustion du charbon, du pétrole ou du gaz, et quatre fois supérieure à celle des réactions de fission nucléaire. La fusion peut fournir l’énergie de base nécessaire pour satisfaire les besoins en électricité de nos villes et de nos industries.

Pérennité : Les combustibles de fusion sont universellement disponibles et quasiment inépuisables. Le deutérium peut être obtenu à partir de l’eau ; le tritium sera produit pendant la réaction de fusion lorsque les neutrons issus de la fusion des noyaux interagiront avec le lithium des modules placés dans la chambre à vide. (Les réserves de lithium dans la croûte terrestre permettraient l’exploitation de centrales de fusion pendant plus de 1 000 ans ; celles des océans pourraient répondre aux besoins pendant des millions d’années.)

Aucune émission de CO₂ : La fusion ne génère pas de dioxyde de carbone ou d’autres gaz à effet de serre. Le sous-produit principal est l’hélium, un gaz inerte non toxique.

Aucun déchet radioactif de haute activité à vie longue : Les réacteurs de fusion nucléaire ne produisent pas de déchets radioactifs de haute activité à vie longue. L’activation des composants d’un réacteur de fusion est suffisamment faible pour que les matériaux puissent être recyclés ou réutilisés dans les 100 ans qui suivent la mise à l’arrêt de l’installation.

Aucune prolifération : La fusion n’utilise pas de matières fissiles comme l’uranium et le plutonium (le tritium radioactif n’est pas un matériau fissile ni fissionnable). Un réacteur de fusion ne contient pas d’éléments susceptibles d’être utilisés pour fabriquer des armes nucléaires.

Aucun risque de fusion du cœur : Un accident nucléaire de type Fukushima ne peut pas se produire dans un réacteur de fusion. Les conditions propices aux réactions de fusion sont difficiles à atteindre ; en cas de perturbation, le plasma se refroidit en l’espace de quelques secondes et les réactions cessent. En outre, la quantité de combustible présente dans l’enceinte est insuffisante pour alimenter les réactions au-delà de quelques secondes et une « réaction en chaîne » est inconcevable du point de vue de la physique.

Coût : La quantité d’énergie produite par un réacteur de fusion industriel, tels qu’ils pourront voir le jour dans la seconde moitié de ce siècle, sera équivalente à celle produite par un réacteur de fission — entre 1 et 1.7 gigawatts. Le coût moyen par kilowatt d’électricité devrait aussi être du même ordre : légèrement plus élevé au début, la technologie étant nouvelle, puis décroissant par la suite dans la mesure où les économies d’échelle feront baisser les prix.

Le mix énergétique des prochaines décennies devra reposer sur une large variété de sources d’énergie différentes. En tant que nouvelle option énergétique non émettrice de carbone et non productrice de déchets nucléaires de haute activité à vie longue, la fusion répond aux défis que représentent le maintien des grands équilibres climatiques, la disponibilité des ressources et la sûreté.

« Fusion » nucléaire : la France veut son propre projet

Fusion nucléaire : la France veut son propre projet

La fusion nucléaire ( Aujourd’hui toutes les centrales nucléaires reposent sur la technique de la fission nucléaire) offre les avantages suivants :

Une énergie abondante : A masse égale, la fusion d’atomes légers libère une énergie près de quatre millions de fois supérieure à celle d’une réaction chimique telle que la combustion du charbon, du pétrole ou du gaz, et quatre fois supérieure à celle des réactions de fission nucléaire. La fusion peut fournir l’énergie de base nécessaire pour satisfaire les besoins en électricité de nos villes et de nos industries.

Pérennité : Les combustibles de fusion sont universellement disponibles et quasiment inépuisables. Le deutérium peut être obtenu à partir de l’eau ; le tritium sera produit pendant la réaction de fusion lorsque les neutrons issus de la fusion des noyaux interagiront avec le lithium des modules placés dans la chambre à vide. (Les réserves de lithium dans la croûte terrestre permettraient l’exploitation de centrales de fusion pendant plus de 1 000 ans ; celles des océans pourraient répondre aux besoins pendant des millions d’années.)

Aucune émission de CO₂ : La fusion ne génère pas de dioxyde de carbone ou d’autres gaz à effet de serre. Le sous-produit principal est l’hélium, un gaz inerte non toxique.

Le CEA espère décrocher une enveloppe de plusieurs dizaines de millions d’euros pour financer une étude de faisabilité d’une centrale à fusion nucléaire plus compacte que le réacteur Iter. Objectif : éviter les écueils d’ingénierie qui découlent de sa dimension XXL. Un projet national de fusion nucléaire permettrait aussi à la France d’avancer plus rapidement sur cet immense défi technologique alors que la course internationale s’intensifie.

Contrairement au projet international Iter , l’objectif n’est plus de faire des machines encore plus grandes, mais, au contraire, de développer des réacteurs à fusion nucléaire plus petits, à l’image de ce qui se produit dans l’industrie de la fission nucléaire qui s’oriente désormais vers des petits réacteurs modulaires, les fameux SMR (pour small modular reactors).
.

Avenir : la fusion nucléaire

Avenir : la fusion nucléaire

La fusion nucléaire pourrait assez prochainement remplacer la fission nucléaire à laquelle reproche surtout de produire des déchets pour l’instant impossible à recycler. par ailleurs es prochaines décennies sont d’une importance capitale pour la mise en place d’une stratégie de réduction des émissions de gaz à effet de serre.

D’ici la fin du siècle, compte tenu de la croissance démographique, de l’augmentation de l’urbanisation et de l’extension du réseau électrique dans les pays en développement, la demande en énergie aura triplé. Le recours aux combustibles fossiles qui ont modelé la civilisation industrielle est synonyme d’émission de gaz à effet de serre et de pollution.

Il est urgent de trouver une nouvelle source d’énergie à grande échelle, non émettrice de CO2, pérenne et disponible. La fusion offre les avantages suivants :

Une énergie abondante : A masse égale, la fusion d’atomes légers libère une énergie près de quatre millions de fois supérieure à celle d’une réaction chimique telle que la combustion du charbon, du pétrole ou du gaz, et quatre fois supérieure à celle des réactions de fission nucléaire. La fusion peut fournir l’énergie de base nécessaire pour satisfaire les besoins en électricité de nos villes et de nos industries.

Pérennité : Les combustibles de fusion sont universellement disponibles et quasiment inépuisables. Le deutérium peut être obtenu à partir de l’eau ; le tritium sera produit pendant la réaction de fusion lorsque les neutrons issus de la fusion des noyaux interagiront avec le lithium des modules placés dans la chambre à vide. (Les réserves de lithium dans la croûte terrestre permettraient l’exploitation de centrales de fusion pendant plus de 1 000 ans ; celles des océans pourraient répondre aux besoins pendant des millions d’années.)

Aucune émission de CO₂ : La fusion ne génère pas de dioxyde de carbone ou d’autres gaz à effet de serre. Le sous-produit principal est l’hélium, un gaz inerte non toxique.

Aucun déchet radioactif de haute activité à vie longue : Les réacteurs de fusion nucléaire ne produisent pas de déchets radioactifs de haute activité à vie longue. L’activation des composants d’un réacteur de fusion est suffisamment faible pour que les matériaux puissent être recyclés ou réutilisés dans les 100 ans qui suivent la mise à l’arrêt de l’installation.

Aucune prolifération : La fusion n’utilise pas de matières fissiles comme l’uranium et le plutonium (le tritium radioactif n’est pas un matériau fissile ni fissionnable). Un réacteur de fusion ne contient pas d’éléments susceptibles d’être utilisés pour fabriquer des armes nucléaires.

Aucun risque de fusion du cœur : Un accident nucléaire de type Fukushima ne peut pas se produire dans un réacteur de fusion. Les conditions propices aux réactions de fusion sont difficiles à atteindre ; en cas de perturbation, le plasma se refroidit en l’espace de quelques secondes et les réactions cessent. En outre, la quantité de combustible présente dans l’enceinte est insuffisante pour alimenter les réactions au-delà de quelques secondes et une « réaction en chaîne » est inconcevable du point de vue de la physique.

Coût : La quantité d’énergie produite par un réacteur de fusion industriel, tels qu’ils pourront voir le jour dans la seconde moitié de ce siècle, sera équivalente à celle produite par un réacteur de fission — entre 1 et 1.7 gigawatts. Le coût moyen par kilowatt d’électricité devrait aussi être du même ordre : légèrement plus élevé au début, la technologie étant nouvelle, puis décroissant par la suite dans la mesure où les économies d’échelle feront baisser les prix.

Le mix énergétique des prochaines décennies devra reposer sur une large variété de sources d’énergie différentes. En tant que nouvelle option énergétique non émettrice de carbone et non productrice de déchets nucléaires de haute activité à vie longue, la fusion répond aux défis que représentent le maintien des grands équilibres climatiques, la disponibilité des ressources et la sûreté.

La fusion nucléaire dès 2030 ?

 

La fusion nucléaire dès 2030 ?

Grâce à de nouvelles avancées technologiques, certaines entreprises prévoient le raccordement de cette source d’énergie au réseau électrique dès la décennie 2030 explique Giulia Petroni  du   The Wall Street Journal .  

 

 

 

Les récentes innovations technologiques et l’essor du financement privé ont ravivé l’intérêt pour la fusion nucléaire — la réaction atomique qui se produit au sein du soleil et des autres étoiles.

Selon les chercheurs, la reproduction de ce processus sur Terre pourrait fournir au monde une énergie propre en quantité pratiquement illimitée. Mais depuis des décennies, les scientifiques ne parviennent pas à progresser vers cet objectif, et certains disent en plaisantant que la fusion nucléaire ne sera pas réalisée avant 30 ans et qu’il en sera toujours ainsi.

Aujourd’hui, certaines entreprises privées affirment que le calendrier pour faire de la fusion une source d’énergie viable à grande échelle est en train de changer et que nous pourrions avoir de l’énergie liée à cette technique sur les réseaux électriques dès les années 2030. D’autres soulignent cependant que cela ne sera pas possible avant la seconde moitié du siècle, mais l’optimisme à l’égard de ce projet de longue haleine qui pourrait se révéler rentable stimule les investissements dans le monde entier.

Un grand nombre de start-up promettant une maîtrise prochaine de la fusion sont apparues au cours des dernières années. Selon un rapport de la Fusion Industry Association et de la U.K. Atomic Energy Authority, au moins 35 entreprises travaillant dans le domaine sont en activité dans le monde, et 18 d’entre elles ont reçu environ 1,8 milliard de dollars de fonds privés au total. Sur les 23 entreprises étudiées dans le rapport, environ la moitié a été fondées au cours des cinq dernières années.

« Le truc avec la fusion, c’est qu’il est impossible d’avoir un accident, il n’y a pas de déchets à vie longue et vous ne pouvez pas créer une arme avec. Cela résout la question de la sécurité énergétique, qui inquiète le monde entier depuis plus d’un siècle »

Technologie nucléaire : l’avenir via la fusion ?

 

 

Technologie nucléaire : l’avenir via la fusion ?

 

 

Récemment les États-Unis ont réalisé des expérimentations significatives en matière de fusion. Une technologie sur laquelle on fonde beaucoup d’espérance car elle ne produit pratiquement pas de déchets. La France est dans une phase d’expérimentation pour un réacteur à fusion dans le cadre du projet international ITER, la Chine a déjà mis au point un réacteur à fusion . Les réacteurs en service actuellement sont à fission nucléaire et ont surtout le désavantage de générer des déchets très toxiques. La fusion nucléaire est considérée par ses défenseurs comme l’énergie de demain car elle est infinie, tout comme celle du soleil, et ne produit ni déchets ni gaz à effet de serre.

La Chine dispose à cet effet d’un réacteur Tokamak HL-2M, le plus performant du pays, dans la province du Sichuan (sud-ouest). Il s’agit d’une chambre de confinement magnétique qui génère une chaleur phénoménale dans le but de fondre des noyaux atomiques.

Ce tokamak est surnommé « soleil artificiel » en raison de la température qui peut y dépasser les 150 millions de degrés, selon Chine nouvelle – soit dix fois la chaleur produite au cœur même du soleil.

La France a lancé en juillet à Saint-Paul-lès-Durance (Bouches-du-Rhône) l’assemblage d’un gigantesque réacteur à fusion dans le cadre du projet Iter. Il vise les 150 millions de degrés mais les premiers tests ne sont pas attendus avant 2025.

L’assemblage du réacteur expérimental ITER, dont l’ambition est d’apprendre à maîtriser la fusion nucléaire, a débuté mardi 28 juillet dans le sud de la France. Mais les connaissances scientifiques en la matière progressent trop lentement au vu de l’urgence climatique.

Le projet a débuté en 2006, avec la signature d’un accord international réunissant 35 pays, dont les membres de l’Union Européenne (avec, à l’époque, le Royaume-Uni), la Suisse, l’Inde, le Japon, la Corée du Sud et les États-Unis. Depuis environ 15 ans, le site ITER (réacteur thermonucléaire expérimental international) s’édifie lentement dans le sud de la France, à Cadarache, dans les Bouches-du-Rhône.
Après plusieurs contretemps, sa construction  a franchi ce mardi 28 juillet une étape symbolique : le lancement de l’assemblage du réacteur, qui devrait encore durer près de cinq ans. Un événement salué par Emmanuel Macron, en visioconférence, ainsi que par les dirigeants de sept des États partenaires du projet.
“Avec la fusion, le nucléaire peut être une promesse d’avenir”, en offrant “une énergie non polluante, décarbonée, sûre et pratiquement sans déchets”d’ici à 2050”.
Théoriquement, la fusion nucléaire permet effectivement d’accéder à une source d’énergie décarbonée, aux déchets radioactifs peu nombreux et à courte durée de vie. Une technologie bien plus propre que la fission nucléaire employée dans les centrales actuelles, et quasiment infinie : la fusion ne nécessite en effet pas d’uranium, minerai dont les réserves tendent à s’épuiser. Elle reproduit, à peu de choses près, les réactions observées au cœur des étoiles, d’où l’expression “mettre le soleil en boîte” pour décrire son mode de fonctionnement.

La fusion est largement plus complexe que la fission nucléaire et les expérimentations nécessitent la construction de tokamaks de plus en plus grands et performants. En effet, chaque changement d’échelle provoque l’apparition de nouveaux phénomènes, qu’il faut apprendre à maîtriser. D’où la naissance d’ITER, tokamak encore plus vaste que Jet et qui aura lui même un successeur.

Énergie–Fusion nucléaire : l’avenir ?

Énergie–Fusion nucléaire : l’avenir ?

 

 

Récemment les États-Unis ont réalisé des expérimentations significatives en matière de fusion. Une technologie sur laquelle on fonde beaucoup d’espérance car elle ne produit pratiquement pas de déchets. La France est dans une phase d’expérimentation pour un réacteur à fusion dans le cadre du projet international ITER, la Chine a déjà mis au point un réacteur à fusion . Les réacteurs en service actuellement sont à fission nucléaire et ont surtout le désavantage de générer des déchets très toxiques. La fusion nucléaire est considérée par ses défenseurs comme l’énergie de demain car elle est infinie, tout comme celle du soleil, et ne produit ni déchets ni gaz à effet de serre.

La Chine dispose à cet effet d’un réacteur Tokamak HL-2M, le plus performant du pays, dans la province du Sichuan (sud-ouest). Il s’agit d’une chambre de confinement magnétique qui génère une chaleur phénoménale dans le but de fondre des noyaux atomiques.

Ce tokamak est surnommé « soleil artificiel » en raison de la température qui peut y dépasser les 150 millions de degrés, selon Chine nouvelle – soit dix fois la chaleur produite au cœur même du soleil.

La France a lancé en juillet à Saint-Paul-lès-Durance (Bouches-du-Rhône) l’assemblage d’un gigantesque réacteur à fusion dans le cadre du projet Iter. Il vise les 150 millions de degrés mais les premiers tests ne sont pas attendus avant 2025.

L’assemblage du réacteur expérimental ITER, dont l’ambition est d’apprendre à maîtriser la fusion nucléaire, a débuté mardi 28 juillet dans le sud de la France. Mais les connaissances scientifiques en la matière progressent trop lentement au vu de l’urgence climatique.

Le projet a débuté en 2006, avec la signature d’un accord international réunissant 35 pays, dont les membres de l’Union Européenne (avec, à l’époque, le Royaume-Uni), la Suisse, l’Inde, le Japon, la Corée du Sud et les États-Unis. Depuis environ 15 ans, le site ITER (réacteur thermonucléaire expérimental international) s’édifie lentement dans le sud de la France, à Cadarache, dans les Bouches-du-Rhône.
Après plusieurs contretemps, sa construction  a franchi ce mardi 28 juillet une étape symbolique : le lancement de l’assemblage du réacteur, qui devrait encore durer près de cinq ans. Un événement salué par Emmanuel Macron, en visioconférence, ainsi que par les dirigeants de sept des États partenaires du projet.
“Avec la fusion, le nucléaire peut être une promesse d’avenir”, en offrant “une énergie non polluante, décarbonée, sûre et pratiquement sans déchets”d’ici à 2050”.
Théoriquement, la fusion nucléaire permet effectivement d’accéder à une source d’énergie décarbonée, aux déchets radioactifs peu nombreux et à courte durée de vie. Une technologie bien plus propre que la fission nucléaire employée dans les centrales actuelles, et quasiment infinie : la fusion ne nécessite en effet pas d’uranium, minerai dont les réserves tendent à s’épuiser. Elle reproduit, à peu de choses près, les réactions observées au cœur des étoiles, d’où l’expression “mettre le soleil en boîte” pour décrire son mode de fonctionnement.

La fusion est largement plus complexe que la fission nucléaire et les expérimentations nécessitent la construction de tokamaks de plus en plus grands et performants. En effet, chaque changement d’échelle provoque l’apparition de nouveaux phénomènes, qu’il faut apprendre à maîtriser. D’où la naissance d’ITER, tokamak encore plus vaste que Jet et qui aura lui même un successeur.

Fusion nucléaire : l’avenir ?

 

Fusion nucléaire : l’avenir ?

 

 

Récemment les États-Unis ont réalisé des expérimentations significatives en matière de fusion. Une technologie sur laquelle on fonde beaucoup d’espérance car elle ne produit pratiquement pas de déchets. La France est dans une phase d’expérimentation pour un réacteur à fusion dans le cadre du projet international ITER, la Chine a déjà mis au point un réacteur à fusion . Les réacteurs en service actuellement sont à fission nucléaire et ont surtout le désavantage de générer des déchets très toxiques. La fusion nucléaire est considérée par ses défenseurs comme l’énergie de demain car elle est infinie, tout comme celle du soleil, et ne produit ni déchets ni gaz à effet de serre.

La Chine dispose à cet effet d’un réacteur Tokamak HL-2M, le plus performant du pays, dans la province du Sichuan (sud-ouest). Il s’agit d’une chambre de confinement magnétique qui génère une chaleur phénoménale dans le but de fondre des noyaux atomiques.

Ce tokamak est surnommé « soleil artificiel » en raison de la température qui peut y dépasser les 150 millions de degrés, selon Chine nouvelle – soit dix fois la chaleur produite au cœur même du soleil.

La France a lancé en juillet à Saint-Paul-lès-Durance (Bouches-du-Rhône) l’assemblage d’un gigantesque réacteur à fusion dans le cadre du projet Iter. Il vise les 150 millions de degrés mais les premiers tests ne sont pas attendus avant 2025.

L’assemblage du réacteur expérimental ITER, dont l’ambition est d’apprendre à maîtriser la fusion nucléaire, a débuté mardi 28 juillet dans le sud de la France. Mais les connaissances scientifiques en la matière progressent trop lentement au vu de l’urgence climatique.

Le projet a débuté en 2006, avec la signature d’un accord international réunissant 35 pays, dont les membres de l’Union Européenne (avec, à l’époque, le Royaume-Uni), la Suisse, l’Inde, le Japon, la Corée du Sud et les États-Unis. Depuis environ 15 ans, le site ITER (réacteur thermonucléaire expérimental international) s’édifie lentement dans le sud de la France, à Cadarache, dans les Bouches-du-Rhône.
Après plusieurs contretemps, sa construction  a franchi ce mardi 28 juillet une étape symbolique : le lancement de l’assemblage du réacteur, qui devrait encore durer près de cinq ans. Un événement salué par Emmanuel Macron, en visioconférence, ainsi que par les dirigeants de sept des États partenaires du projet.
“Avec la fusion, le nucléaire peut être une promesse d’avenir”, en offrant “une énergie non polluante, décarbonée, sûre et pratiquement sans déchets”, d’ici à 2050”.
Théoriquement, la fusion nucléaire permet effectivement d’accéder à une source d’énergie décarbonée, aux déchets radioactifs peu nombreux et à courte durée de vie. Une technologie bien plus propre que la fission nucléaire employée dans les centrales actuelles, et quasiment infinie : la fusion ne nécessite en effet pas d’uranium, minerai dont les réserves tendent à s’épuiser. Elle reproduit, à peu de choses près, les réactions observées au cœur des étoiles, d’où l’expression “mettre le soleil en boîte” pour décrire son mode de fonctionnement.

La fusion est largement plus complexe que la fission nucléaire et les expérimentations nécessitent la construction de tokamaks de plus en plus grands et performants. En effet, chaque changement d’échelle provoque l’apparition de nouveaux phénomènes, qu’il faut apprendre à maîtriser. D’où la naissance d’ITER, tokamak encore plus vaste que Jet et qui aura lui même un successeur.

Fusion du ministère de l’écologie et du ministère de l’agriculture ?

Fusion du ministère de l’écologie et du ministère de l’agriculture ?

 

 

Cette fusion souhaitée par l’actuel ministre de l’écologie n’est qu’une hypothèse.. Barbara Pompidou  la réclame pour l’ ensemble de l’Europe rassemble mais aura bien du mal à l’obtenir en France. La problématique écologique recouvre un très grand nombre de champs ministériels qui ne peuvent tous être groupés. Le plus évident serait de faire dépendre le ministère de l’écologie directement des services du Premier ministre. Une réforme qui n’est sans doute pas demain ni en France, ni en Europe. Invitée au Congrès, la ministre de la Transition écologique Barbara Pompili a notamment plaidé pour «un ou une ministre de la Transition écologique dans tous les pays». «Et ce ministère devrait inclure l’Agriculture, j’en suis persuadée», a-t-elle déclaré. Nicolas Hulot a adressé à la ministre un «encouragement» en clôture de la cérémonie d’ouverture.

 

Énergie–Fusion nucléaire : quel avenir ?

Énergie–Fusion nucléaire : quel avenir ?

Par Greg De Temmerman, Mines ParisTech (*)

Un laboratoire américain vient d’annoncer de nouveaux résultats en fusion nucléaire « inertielle », avec une production d’énergie de 1,3 mégajoule. Que représente cette avancée pour la fusion, cette « éternelle » énergie du futur ?

Entre le mégaprojet ITER, dont la construction avance mais qui a connu des débuts difficiles, les projets lancés par différents pays, les initiatives privées qui se multiplient et qui annoncent des réacteurs de fusion d’ici 10 ou 15 ans, et les résultats obtenus par le Lawrence Livermore National Laboratory le 8 août 2021, il est difficile d’y voir clair. Voici un petit tour d’horizon pour mettre tout ceci en perspective.

Confinement magnétique ou inertiel : deux voies possibles pour la fusion nucléaire

Il existe deux façons d’utiliser l’énergie nucléaire : la fission qui est à l’œuvre dans les centrales nucléaires actuelles, et la fusion.

La réaction de fusion entre le deutérium et le tritium, deux isotopes de l’hydrogène, produit un neutron et un atome d’hélium. Alors que dans la fission, des atomes lourds d’uranium sont cassés en plus petits atomes pour libérer de l’énergie, la fusion nucléaire est le processus opposé : on transforme des atomes légers en des atomes plus lourds pour libérer de l’énergie. Gregory de Temmerman, Fourni par l’auteur

Un réacteur de fusion est un amplificateur de puissance : la réaction de fusion doit produire plus d’énergie qu’il n’en faut pour chauffer le plasma à la température requise et le confiner. Le record actuel a été obtenu en 1997 par le « Joint European Torus » ou JET au Royaume-Uni, où une puissance de 16 mégawatts a été générée par la fusion magnétique, mais il a fallu 23 mégawatts pour la déclencher.

Obtenir enfin un gain supérieur à 1 et démontrer la faisabilité de la production d’énergie par la fusion est un objectif majeur de différents projets en cours.

Il y a deux voies possibles pour réaliser la fusion nucléaire : le confinement magnétique qui utilise des aimants puissants pour confiner le plasma pendant des durées très longues, et le confinement inertiel qui utilise des lasers très puissants mais très brefs pour comprimer le combustible et le faire réagir. Historiquement, la fusion magnétique a été privilégiée, car la technologie nécessaire pour la fusion inertielle (lasers notamment) n’était pas disponible. Cette dernière nécessite également des gains bien plus élevés pour compenser l’énergie consommée par les lasers.

Les deux plus gros projets sont le National Ignition Facility du Lawrence Livermore National Laboratory (NIF) aux USA et le Laser MégaJoule en France, dont les applications sont principalement militaires (simulations d’explosion nucléaires) et financées par les programmes de défense. Le NIF poursuit également des recherches pour l’énergie.

Le NIF utilise 192 faisceaux laser, d’une énergie totale de 1,9 mégajoule et d’une durée de quelques nanosecondes, pour déclencher la réaction de fusion selon une approche dite « indirecte ». En effet, le combustible est placé à l’intérieur d’une capsule métallique de quelques millimètres, qui, chauffée par les lasers, qui émet des rayons X. Ceux-ci chauffent et compriment le combustible. L’alignement des lasers est plus aisé que si ceux-ci visaient directement la cible, mais seule une partie de leur énergie est convertie en rayons X et sert au chauffage.

Le NIF a récemment fait l’objet d’une forte attention médiatique après un record de production d’énergie obtenu le 8 août 2021. Durant cette expérience, une énergie de 1,3 mégajoule a été produite, la valeur la plus élevée jamais enregistrée par cette approche.

Le gain global de 0,7 égale le record obtenu par JET en 1997 par confinement magnétique, mais si on s’intéresse au bilan énergétique du combustible lui-même (cible d’hydrogène), on comprend l’excitation dans le domaine. Celui-ci a en effet absorbé 0,25 mégajoule (la conversion laser-rayons X entraîne des pertes) et généré 1,3 mégajoule : la fusion a donc généré une bonne partie de la chaleur nécessaire à la réaction, s’approchant de l’ignition. Un réacteur devra atteindre des gains bien plus élevés (supérieurs à 100) pour être économiquement intéressant.

Le confinement magnétique est la voie privilégiée pour l’énergie, car il offre de meilleures perspectives de développement et bénéficie d’un retour d’expérience plus important.

La grande majorité des recherches se concentre sur le tokamak, une configuration inventée en URSS dans les années 1960 où le plasma est confiné sous la forme d’un tore par un champ magnétique puissant. C’est la configuration choisie par ITER, réacteur de démonstration en construction à Cadarache dans le sud de la France, dont l’objectif est de démontrer un gain de 10 – le plasma sera chauffé par 50 mégawatts de puissance et doit générer 500 mégawatts de puissance fusion. Si ce projet titanesque impliquant 35 nations a connu des débuts difficiles, la construction avance à rythme soutenu et le premier plasma est attendu officiellement pour fin 2025, avec une démonstration de la fusion prévue vers la fin des années 2030.

Le Royaume-Uni a récemment lancé le projet STEP (Spherical Tokamak for Electricity Production) qui vise à développer un réacteur connecté au réseau dans les années 2040. La Chine poursuit avec CFETR un ambitieux programme visant à démontrer la production électrique et de tritium dans les années 2040. Enfin, l’Europe prévoit après ITER un démonstrateur tokamak (DEMO) pour les années 2050, ce qui implique un déploiement seulement dans la deuxième partie du siècle.

Une autre configuration – le stellarator – est explorée notamment en Allemagne avec Wendelstein-7X qui démontre de très bons résultats. Si le confinement dans un stellarator est en deçà de ce qu’un tokamak peut atteindre, sa stabilité intrinsèque et les résultats récents en font une alternative sérieuse.

 

Les initiatives privées

En parallèle de ces projets publics, on entend de plus en plus parler d’initiatives privées, parfois soutenues par des grands noms comme Jeff Bezos ou Bill Gates. L’entreprise la plus ancienne (TAE) a été fondée en 1998 mais une accélération s’est produite après 2010 et on compte en 2021 environ une trentaine d’initiatives ayant attiré environ 2 milliards de dollars de capitaux au total. La majorité de ces initiatives promettent un réacteur dans les 10 ou 20 prochaines années et se posent comme une alternative à la lenteur de la filière classique.

Illustration du déploiement de la fusion nucléaire selon deux scénarios, plus ou moins rapides. Fourni par l’auteur

Elles utilisent les développements technologiques récents (aimants supraconducteurs à haute température par ex), ou diverses configurations dont certaines n’avaient jamais été vraiment explorées : General Fusion utilise par exemple des pistons pour compresser le combustible. Si les résultats ne sont pas toujours publiés dans la littérature scientifique, on voit régulièrement des annonces démontrant des progrès réels. Si l’une de ces entreprises venait à démontrer la production d’énergie dans les délais promis, cela pourrait fortement accélérer les possibilités d’utiliser la fusion nucléaire.

Il faut cependant garder en tête que le développement d’un premier réacteur est certes extrêmement important, mais que le déploiement d’une flotte de réacteur prendra du temps. Si on regarde les taux de déploiement du photovoltaïque, de l’éolien, et du nucléaire, on constate que dans leur phase de croissance exponentielle le taux de croissance de la puissance installée était entre 20 et 35 % par an. Si on suppose que la fusion parvient à suivre le même rythme, on voit que la fusion, en suivant la ligne ITER-DEMO, pourrait représenter 1 % de la demande énergétique mondiale (valeur 2019) vers 2090. Si on considère un réacteur dans les années 2030, ce seuil pourrait être atteint vers 2060 et la fusion pourrait jouer un rôle plus important dans la deuxième partie du siècle. La fusion reste donc une aventure au long cours.

_____

(*) Par Greg De Temmerman, Chercheur associé à Mines ParisTech-PSL. Directeur général de Zenon Research, Mines ParisTech.

La version originale de cet article a été publiée sur The Conversation.

Fusion nucléaire : quel avenir ?

Fusion nucléaire : quel avenir ?

Par Greg De Temmerman, Mines ParisTech (*)

Un laboratoire américain vient d’annoncer de nouveaux résultats en fusion nucléaire « inertielle », avec une production d’énergie de 1,3 mégajoule. Que représente cette avancée pour la fusion, cette « éternelle » énergie du futur ?

Entre le mégaprojet ITER, dont la construction avance mais qui a connu des débuts difficiles, les projets lancés par différents pays, les initiatives privées qui se multiplient et qui annoncent des réacteurs de fusion d’ici 10 ou 15 ans, et les résultats obtenus par le Lawrence Livermore National Laboratory le 8 août 2021, il est difficile d’y voir clair. Voici un petit tour d’horizon pour mettre tout ceci en perspective.

Confinement magnétique ou inertiel : deux voies possibles pour la fusion nucléaire

Il existe deux façons d’utiliser l’énergie nucléaire : la fission qui est à l’œuvre dans les centrales nucléaires actuelles, et la fusion.

La réaction de fusion entre le deutérium et le tritium, deux isotopes de l’hydrogène, produit un neutron et un atome d’hélium. Alors que dans la fission, des atomes lourds d’uranium sont cassés en plus petits atomes pour libérer de l’énergie, la fusion nucléaire est le processus opposé : on transforme des atomes légers en des atomes plus lourds pour libérer de l’énergie. Gregory de Temmerman, Fourni par l’auteur

Un réacteur de fusion est un amplificateur de puissance : la réaction de fusion doit produire plus d’énergie qu’il n’en faut pour chauffer le plasma à la température requise et le confiner. Le record actuel a été obtenu en 1997 par le « Joint European Torus » ou JET au Royaume-Uni, où une puissance de 16 mégawatts a été générée par la fusion magnétique, mais il a fallu 23 mégawatts pour la déclencher.

Obtenir enfin un gain supérieur à 1 et démontrer la faisabilité de la production d’énergie par la fusion est un objectif majeur de différents projets en cours.

Il y a deux voies possibles pour réaliser la fusion nucléaire : le confinement magnétique qui utilise des aimants puissants pour confiner le plasma pendant des durées très longues, et le confinement inertiel qui utilise des lasers très puissants mais très brefs pour comprimer le combustible et le faire réagir. Historiquement, la fusion magnétique a été privilégiée, car la technologie nécessaire pour la fusion inertielle (lasers notamment) n’était pas disponible. Cette dernière nécessite également des gains bien plus élevés pour compenser l’énergie consommée par les lasers.

Les deux plus gros projets sont le National Ignition Facility du Lawrence Livermore National Laboratory (NIF) aux USA et le Laser MégaJoule en France, dont les applications sont principalement militaires (simulations d’explosion nucléaires) et financées par les programmes de défense. Le NIF poursuit également des recherches pour l’énergie.

Le NIF utilise 192 faisceaux laser, d’une énergie totale de 1,9 mégajoule et d’une durée de quelques nanosecondes, pour déclencher la réaction de fusion selon une approche dite « indirecte ». En effet, le combustible est placé à l’intérieur d’une capsule métallique de quelques millimètres, qui, chauffée par les lasers, qui émet des rayons X. Ceux-ci chauffent et compriment le combustible. L’alignement des lasers est plus aisé que si ceux-ci visaient directement la cible, mais seule une partie de leur énergie est convertie en rayons X et sert au chauffage.

Le NIF a récemment fait l’objet d’une forte attention médiatique après un record de production d’énergie obtenu le 8 août 2021. Durant cette expérience, une énergie de 1,3 mégajoule a été produite, la valeur la plus élevée jamais enregistrée par cette approche.

Le gain global de 0,7 égale le record obtenu par JET en 1997 par confinement magnétique, mais si on s’intéresse au bilan énergétique du combustible lui-même (cible d’hydrogène), on comprend l’excitation dans le domaine. Celui-ci a en effet absorbé 0,25 mégajoule (la conversion laser-rayons X entraîne des pertes) et généré 1,3 mégajoule : la fusion a donc généré une bonne partie de la chaleur nécessaire à la réaction, s’approchant de l’ignition. Un réacteur devra atteindre des gains bien plus élevés (supérieurs à 100) pour être économiquement intéressant.

Le confinement magnétique est la voie privilégiée pour l’énergie, car il offre de meilleures perspectives de développement et bénéficie d’un retour d’expérience plus important.

La grande majorité des recherches se concentre sur le tokamak, une configuration inventée en URSS dans les années 1960 où le plasma est confiné sous la forme d’un tore par un champ magnétique puissant. C’est la configuration choisie par ITER, réacteur de démonstration en construction à Cadarache dans le sud de la France, dont l’objectif est de démontrer un gain de 10 – le plasma sera chauffé par 50 mégawatts de puissance et doit générer 500 mégawatts de puissance fusion. Si ce projet titanesque impliquant 35 nations a connu des débuts difficiles, la construction avance à rythme soutenu et le premier plasma est attendu officiellement pour fin 2025, avec une démonstration de la fusion prévue vers la fin des années 2030.

Le Royaume-Uni a récemment lancé le projet STEP (Spherical Tokamak for Electricity Production) qui vise à développer un réacteur connecté au réseau dans les années 2040. La Chine poursuit avec CFETR un ambitieux programme visant à démontrer la production électrique et de tritium dans les années 2040. Enfin, l’Europe prévoit après ITER un démonstrateur tokamak (DEMO) pour les années 2050, ce qui implique un déploiement seulement dans la deuxième partie du siècle.

Une autre configuration – le stellarator – est explorée notamment en Allemagne avec Wendelstein-7X qui démontre de très bons résultats. Si le confinement dans un stellarator est en deçà de ce qu’un tokamak peut atteindre, sa stabilité intrinsèque et les résultats récents en font une alternative sérieuse.

 

Les initiatives privées

En parallèle de ces projets publics, on entend de plus en plus parler d’initiatives privées, parfois soutenues par des grands noms comme Jeff Bezos ou Bill Gates. L’entreprise la plus ancienne (TAE) a été fondée en 1998 mais une accélération s’est produite après 2010 et on compte en 2021 environ une trentaine d’initiatives ayant attiré environ 2 milliards de dollars de capitaux au total. La majorité de ces initiatives promettent un réacteur dans les 10 ou 20 prochaines années et se posent comme une alternative à la lenteur de la filière classique.

Illustration du déploiement de la fusion nucléaire selon deux scénarios, plus ou moins rapides. Fourni par l’auteur

Elles utilisent les développements technologiques récents (aimants supraconducteurs à haute température par ex), ou diverses configurations dont certaines n’avaient jamais été vraiment explorées : General Fusion utilise par exemple des pistons pour compresser le combustible. Si les résultats ne sont pas toujours publiés dans la littérature scientifique, on voit régulièrement des annonces démontrant des progrès réels. Si l’une de ces entreprises venait à démontrer la production d’énergie dans les délais promis, cela pourrait fortement accélérer les possibilités d’utiliser la fusion nucléaire.

Il faut cependant garder en tête que le développement d’un premier réacteur est certes extrêmement important, mais que le déploiement d’une flotte de réacteur prendra du temps. Si on regarde les taux de déploiement du photovoltaïque, de l’éolien, et du nucléaire, on constate que dans leur phase de croissance exponentielle le taux de croissance de la puissance installée était entre 20 et 35 % par an. Si on suppose que la fusion parvient à suivre le même rythme, on voit que la fusion, en suivant la ligne ITER-DEMO, pourrait représenter 1 % de la demande énergétique mondiale (valeur 2019) vers 2090. Si on considère un réacteur dans les années 2030, ce seuil pourrait être atteint vers 2060 et la fusion pourrait jouer un rôle plus important dans la deuxième partie du siècle. La fusion reste donc une aventure au long cours.

_____

(*) Par Greg De Temmerman, Chercheur associé à Mines ParisTech-PSL. Directeur général de Zenon Research, Mines ParisTech.

La version originale de cet article a été publiée sur The Conversation.

Fusion nucléaire : perspective pour l’énergie

Fusion nucléaire : perspective pour l’énergie 

. Par Greg De Temmerman, Mines ParisTech (*)

Un laboratoire américain vient d’annoncer de nouveaux résultats en fusion nucléaire « inertielle », avec une production d’énergie de 1,3 mégajoule. Que représente cette avancée pour la fusion, cette « éternelle » énergie du futur ?

Entre le mégaprojet ITER, dont la construction avance mais qui a connu des débuts difficiles, les projets lancés par différents pays, les initiatives privées qui se multiplient et qui annoncent des réacteurs de fusion d’ici 10 ou 15 ans, et les résultats obtenus par le Lawrence Livermore National Laboratory le 8 août 2021, il est difficile d’y voir clair. Voici un petit tour d’horizon pour mettre tout ceci en perspective.

Confinement magnétique ou inertiel : deux voies possibles pour la fusion nucléaire

Il existe deux façons d’utiliser l’énergie nucléaire : la fission qui est à l’œuvre dans les centrales nucléaires actuelles, et la fusion.

La réaction de fusion entre le deutérium et le tritium, deux isotopes de l’hydrogène, produit un neutron et un atome d’hélium. Alors que dans la fission, des atomes lourds d’uranium sont cassés en plus petits atomes pour libérer de l’énergie, la fusion nucléaire est le processus opposé : on transforme des atomes légers en des atomes plus lourds pour libérer de l’énergie. Gregory de Temmerman, Fourni par l’auteur

Un réacteur de fusion est un amplificateur de puissance : la réaction de fusion doit produire plus d’énergie qu’il n’en faut pour chauffer le plasma à la température requise et le confiner. Le record actuel a été obtenu en 1997 par le « Joint European Torus » ou JET au Royaume-Uni, où une puissance de 16 mégawatts a été générée par la fusion magnétique, mais il a fallu 23 mégawatts pour la déclencher.

Obtenir enfin un gain supérieur à 1 et démontrer la faisabilité de la production d’énergie par la fusion est un objectif majeur de différents projets en cours.

Il y a deux voies possibles pour réaliser la fusion nucléaire : le confinement magnétique qui utilise des aimants puissants pour confiner le plasma pendant des durées très longues, et le confinement inertiel qui utilise des lasers très puissants mais très brefs pour comprimer le combustible et le faire réagir. Historiquement, la fusion magnétique a été privilégiée, car la technologie nécessaire pour la fusion inertielle (lasers notamment) n’était pas disponible. Cette dernière nécessite également des gains bien plus élevés pour compenser l’énergie consommée par les lasers.

Les deux plus gros projets sont le National Ignition Facility du Lawrence Livermore National Laboratory (NIF) aux USA et le Laser MégaJoule en France, dont les applications sont principalement militaires (simulations d’explosion nucléaires) et financées par les programmes de défense. Le NIF poursuit également des recherches pour l’énergie.

Le NIF utilise 192 faisceaux laser, d’une énergie totale de 1,9 mégajoule et d’une durée de quelques nanosecondes, pour déclencher la réaction de fusion selon une approche dite « indirecte ». En effet, le combustible est placé à l’intérieur d’une capsule métallique de quelques millimètres, qui, chauffée par les lasers, qui émet des rayons X. Ceux-ci chauffent et compriment le combustible. L’alignement des lasers est plus aisé que si ceux-ci visaient directement la cible, mais seule une partie de leur énergie est convertie en rayons X et sert au chauffage.

Le NIF a récemment fait l’objet d’une forte attention médiatique après un record de production d’énergie obtenu le 8 août 2021. Durant cette expérience, une énergie de 1,3 mégajoule a été produite, la valeur la plus élevée jamais enregistrée par cette approche.

Le gain global de 0,7 égale le record obtenu par JET en 1997 par confinement magnétique, mais si on s’intéresse au bilan énergétique du combustible lui-même (cible d’hydrogène), on comprend l’excitation dans le domaine. Celui-ci a en effet absorbé 0,25 mégajoule (la conversion laser-rayons X entraîne des pertes) et généré 1,3 mégajoule : la fusion a donc généré une bonne partie de la chaleur nécessaire à la réaction, s’approchant de l’ignition. Un réacteur devra atteindre des gains bien plus élevés (supérieurs à 100) pour être économiquement intéressant.

Le confinement magnétique est la voie privilégiée pour l’énergie, car il offre de meilleures perspectives de développement et bénéficie d’un retour d’expérience plus important.

La grande majorité des recherches se concentre sur le tokamak, une configuration inventée en URSS dans les années 1960 où le plasma est confiné sous la forme d’un tore par un champ magnétique puissant. C’est la configuration choisie par ITER, réacteur de démonstration en construction à Cadarache dans le sud de la France, dont l’objectif est de démontrer un gain de 10 – le plasma sera chauffé par 50 mégawatts de puissance et doit générer 500 mégawatts de puissance fusion. Si ce projet titanesque impliquant 35 nations a connu des débuts difficiles, la construction avance à rythme soutenu et le premier plasma est attendu officiellement pour fin 2025, avec une démonstration de la fusion prévue vers la fin des années 2030.

Le Royaume-Uni a récemment lancé le projet STEP (Spherical Tokamak for Electricity Production) qui vise à développer un réacteur connecté au réseau dans les années 2040. La Chine poursuit avec CFETR un ambitieux programme visant à démontrer la production électrique et de tritium dans les années 2040. Enfin, l’Europe prévoit après ITER un démonstrateur tokamak (DEMO) pour les années 2050, ce qui implique un déploiement seulement dans la deuxième partie du siècle.

Une autre configuration – le stellarator – est explorée notamment en Allemagne avec Wendelstein-7X qui démontre de très bons résultats. Si le confinement dans un stellarator est en deçà de ce qu’un tokamak peut atteindre, sa stabilité intrinsèque et les résultats récents en font une alternative sérieuse.

 

Les initiatives privées

En parallèle de ces projets publics, on entend de plus en plus parler d’initiatives privées, parfois soutenues par des grands noms comme Jeff Bezos ou Bill Gates. L’entreprise la plus ancienne (TAE) a été fondée en 1998 mais une accélération s’est produite après 2010 et on compte en 2021 environ une trentaine d’initiatives ayant attiré environ 2 milliards de dollars de capitaux au total. La majorité de ces initiatives promettent un réacteur dans les 10 ou 20 prochaines années et se posent comme une alternative à la lenteur de la filière classique.

Illustration du déploiement de la fusion nucléaire selon deux scénarios, plus ou moins rapides. Fourni par l’auteur

Elles utilisent les développements technologiques récents (aimants supraconducteurs à haute température par ex), ou diverses configurations dont certaines n’avaient jamais été vraiment explorées : General Fusion utilise par exemple des pistons pour compresser le combustible. Si les résultats ne sont pas toujours publiés dans la littérature scientifique, on voit régulièrement des annonces démontrant des progrès réels. Si l’une de ces entreprises venait à démontrer la production d’énergie dans les délais promis, cela pourrait fortement accélérer les possibilités d’utiliser la fusion nucléaire.

Il faut cependant garder en tête que le développement d’un premier réacteur est certes extrêmement important, mais que le déploiement d’une flotte de réacteur prendra du temps. Si on regarde les taux de déploiement du photovoltaïque, de l’éolien, et du nucléaire, on constate que dans leur phase de croissance exponentielle le taux de croissance de la puissance installée était entre 20 et 35 % par an. Si on suppose que la fusion parvient à suivre le même rythme, on voit que la fusion, en suivant la ligne ITER-DEMO, pourrait représenter 1 % de la demande énergétique mondiale (valeur 2019) vers 2090. Si on considère un réacteur dans les années 2030, ce seuil pourrait être atteint vers 2060 et la fusion pourrait jouer un rôle plus important dans la deuxième partie du siècle. La fusion reste donc une aventure au long cours.

_____

(*) Par Greg De Temmerman, Chercheur associé à Mines ParisTech-PSL. Directeur général de Zenon Research, Mines ParisTech.

La version originale de cet article a été publiée sur The Conversation.

Fusion nucléaire : un progrès qui pourrait être significatif

Fusion nucléaire : un progrès qui pourrait être significatif

Un  laboratoire californien, rattaché au département de l’Énergie des États-Unis, s’est félicité d’avoir produit davantage d’énergie que jamais auparavant grâce à la fusion nucléaire (aujourd’hui la totalité du parc nucléaire mondial utilise la technique de la fission ). L’expérience, qui s’est déroulée le 8 août dernier, « a été permise par la concentration de la lumière de lasers », pas moins de 192,  »sur une cible de la taille d’un plomb » de chasse, expliquent les chercheurs dans un communiqué de presse.

Cela a eu pour effet de « produire un point chaud du diamètre d’un cheveu, générant plus de 10 quadrillions de watts par la fusion, pendant 100 trillionièmes de secondes. » C’est huit fois plus d’énergie que lors des expériences menées au printemps dernier. Surtout, ce résultat placerait les chercheurs proches du seuil d’ignition, c’est-à-dire du moment où l’énergie produite dépasse celle utilisée pour provoquer la réaction.

. Mené dans le sud de la France le projet international ITER  vise également à maîtriser la production d’énergie à partir de la fusion de l’hydrogène. L’assemblage du réacteur a commencé il y a un an dans les Bouches-du-Rhône et la fin des travaux est fixée à décembre 2025. Iter ne produira jamais d’électricité. Ce projet, à plus de 20 milliards de dollars, vise simplement à démontrer la faisabilité scientifique et technique de l’énergie de fusion. Une première expérimentation à pleine puissance est espérée en 2035 et l’exploitation commerciale de la technologie n’est pas attendue avant 2055, voire 2060. Outre l’avantage énergétique la technique de la fusion permet d’éliminer à peu près tous les déchets nucléaires.

Fusion nucléaire : un progrès américain qui pourrait être significatif

Fusion nucléaire : un progrès américain qui pourrait être significatif

Un  laboratoire californien, rattaché au département de l’Énergie des États-Unis, s’est félicité d’avoir produit davantage d’énergie que jamais auparavant grâce à la fusion nucléaire (aujourd’hui la totalité du parc nucléaire mondial utilise la technique de la fission ). L’expérience, qui s’est déroulée le 8 août dernier, « a été permise par la concentration de la lumière de lasers », pas moins de 192,  »sur une cible de la taille d’un plomb » de chasse, expliquent les chercheurs dans un communiqué de presse.

Cela a eu pour effet de « produire un point chaud du diamètre d’un cheveu, générant plus de 10 quadrillions de watts par la fusion, pendant 100 trillionièmes de secondes. » C’est huit fois plus d’énergie que lors des expériences menées au printemps dernier. Surtout, ce résultat placerait les chercheurs proches du seuil d’ignition, c’est-à-dire du moment où l’énergie produite dépasse celle utilisée pour provoquer la réaction.

. Mené dans le sud de la France le projet international ITER  vise également à maîtriser la production d’énergie à partir de la fusion de l’hydrogène. L’assemblage du réacteur a commencé il y a un an dans les Bouches-du-Rhône et la fin des travaux est fixée à décembre 2025. Iter ne produira jamais d’électricité. Ce projet, à plus de 20 milliards de dollars, vise simplement à démontrer la faisabilité scientifique et technique de l’énergie de fusion. Une première expérimentation à pleine puissance est espérée en 2035 et l’exploitation commerciale de la technologie n’est pas attendue avant 2055, voire 2060. Outre l’avantage énergétique la technique de la fusion permet d’éliminer à peu près tous les déchets nucléaires.

Fusion Faurecia–Ella : un futur géant mondial de l’équipement automobile

Fusion Faurecia–Ella  :  un futur géant mondial de l’équipement automobile

 

L’équipementier français a finalisé l’acquisition d’une participation majoritaire (60%) dans le capital de l’un de ses concurrents, l’allemand Hella qui fabrique notamment des phares et des composants électroniques pour les véhicules. Avec cette acquisition, un nouveau géant va naître, capable de réaliser un chiffre d’affaires de 23 milliards d’euros en 2021, soit « le 7ème fournisseur automobile mondial », indique Faurecia.

Basée à Lippstadt (Rhénanie-du-Nord-Westphalie), Hella a obtenu des garanties de la part de son acquéreur.  En plus de maintenir l’intérêt des 36.000 employés de son concurrent, il a notamment promis de maintenir les activités du siège dans la ville.

Au premier semestre 2021, le groupe français s’est montré solide lors de la reprise. En croissance organique, ses ventes avait progressé de plus de 12%, à 4 milliards d’euros de janvier à mars, soit 8,9% de plus qu’au premier trimestre 2020.

A l’inverse, dans ses résultats annuels sur la période 2019-2020, Hella a été frappée de plein fouet par la crise Covid-19, accusant d’un recul de ses ventes de -14,3% « sur un marché déjà en déclin », précisait-elle. Son chiffre d’affaires (Ebit) ressortait alors à -343 millions d’euros.

Malgré la pénurie de semi-conducteurs, Faurecia vise aussi une marge opérationnelle d’environ 7% de ses ventes qui se rapprocherait ainsi de ses niveaux d’avant la crise sanitaire.

Pour doper ses ventes, il compte enfin sur « la mobilité durable » et les nouveaux systèmes basés sur l’hydrogène pour continuer à fournir les constructeurs automobiles engagés dans la transformation de leur modèle. Selon le groupe, l’hydrogène sera abordable et produit en grande quantité d’ici 2030 – date à laquelle Faurecia prévoit d’être neutre en carbone – et il représentera un cinquième de la demande d’énergie mondiale à l’horizon 2050.

Fusion des réseaux Société Générale et Crédit du Nord : 3000 à 5000 emplois menacés

Fusion des réseaux Société Générale et Crédit du Nord : 3000 à 5000 emplois menacés

 

La fusion des réseaux a été décidée au cours du week-end. La Société Générale avait déjà annoncé en septembre qu’il envisageait la fusion des deux réseaux, un tournant qui verrait naître une nouvelle banque de détail forte de 10 millions de clients. Jusqu’à présent, le groupe Société Générale avait organisé son activité de détail en France sur trois réseaux, profitant chacun d’un large niveau d’autonomie: le réseau sous son nom, celui du Crédit du Nord et la banque en ligne Boursorama.

La CFDT du Crédit du Nord a  estimé que les deux banques pourraient perdre au moins «entre 3000 et 5000 emplois».

123456



L'actu écologique |
bessay |
Mr. Sandro's Blog |
Unblog.fr | Annuaire | Signaler un abus | astucesquotidiennes
| MIEUX-ETRE
| louis crusol