Archive pour le Tag 'antibiotiques'

Santé-la résistance aux antibiotiques

santé-la résistance aux antibiotiques

Pariac
Maître de Conférences en Microbiologie, Université de Caen Normandie

Eliette Riboulet-Bisson
Maître de Conférences en Microbiologie, Université de Caen Normandie dans The conversation


S’il y a une chose que la pandémie de Covid-19 nous a apprise, c’est que les virus ne connaissent pas les frontières… Ni aucun microbe, d’ailleurs : avec plus de 30 millions de vols d’avion par an, soit plus de 80 000 par jour, les déplacements de l’être humain et le transport de marchandises sont autant de moyens de dissémination des bactéries, champignons, parasites et autres virus – y compris de ceux qui provoquent des maladies. Si soigner les infections virales n’est pas facile, car il n’existe pas de traitement universel, les choses sont différentes en ce qui concerne les bactéries. Nous disposons en effet, depuis les années 1940, de traitements accessibles et souvent efficaces contre la grande majorité d’entre elles : les antibiotiques, des substances d’origine naturelle, semi-synthétiques ou synthétiques. Malheureusement, aujourd’hui on craint que cette efficacité ne soit bientôt reléguée au rang de beau souvenir. En effet, l’utilisation excessive et non adaptée des antibiotiques, conjuguée aux formidables capacités évolutives des bactéries, a mené au développement de souches résistantes à ces médicaments. Plus grave, cette « antibiorésistance » se répand, car les bactéries sont capables de s’échanger les gènes qui leur permettent de se débarrasser des antibiotiques. Et ce, même quand elles appartiennent à des espèces différentes !

En 2002, les pouvoirs publics et la Caisse nationale d’assurance maladie tentaient de sensibiliser les Français à la gravité de la situation. Si le slogan martelé alors (« Les antibiotiques, c’est pas automatique ») est entré dans toutes les têtes, les choses ne se sont pas améliorées pour autant, bien au contraire. Au point qu’en 2018 le ministère de la Santé proposait un nouveau slogan : « Les antibiotiques sont précieux, utilisons-les mieux ». Aujourd’hui, l’Organisation mondiale de la santé elle-même tire la sonnette d’alarme, appelant les chercheurs du monde entier à engager des recherches pour améliorer les traitements existants et, surtout, en mettre au point de nouveaux.

Deux décennies après les premiers cris d’alarme, où en est-on vraiment ? Quelles sont les stratégies mises en place pour lutter contre l’antibiorésistance ?

En 1928, Alexander Flemming découvre par hasard la pénicilline. Mais ce n’est que dans les années 1940, par le travail d’Howard Walter Florey et Ernst Boris Chain, que sa production industrielle sera mise en place. Et changera le cours de l’histoire : Ces médicaments « miracles » ont ainsi ajouté en moyenne 20 ans à l’espérance de vie à travers le monde. Suivront 20 années de découvertes sensationnelles durant lesquelles la majorité des antibiotiques encore utilisés aujourd’hui sont découverts.

Le problème est que les bactéries s’adaptent et développent des mécanismes de résistance contre chaque nouvel antibiotique découvert et utilisé. Les antibiotiques agissent au niveau de divers composants de la cellule bactérienne : la membrane, l’ADN, etc. Malheureusement, il arrive que certaines bactéries acquièrent une résistance à ces molécules. Diverses mutations peuvent par exemple leur permettre d’acquérir la capacité de détruire un antibiotique donné, de le rejeter dans le milieu extérieur, ou encore modifier sa cible initiale pour le rendre inopérant.

Au fil des années, la multiplication de ces stratégies de défense a résulté en un nombre croissant de bactéries résistantes, voire multirésistantes à des traitements jusque-là efficaces – entraînant chaque jour plus de décès.

Dans un premier temps, le grand nombre de molécules découvertes a permis de pallier ce problème. Mais dans le courant des années 1970, les travaux académiques se sont peu à peu détournés de la recherche de nouveaux antibiotiques. Les chimistes travaillant pour l’industrie pharmaceutique continueront à produire de nouvelles générations d’antibiotiques, en modifiant des antibiotiques connus, afin de cibler les bactéries résistantes.

L’avènement de l’ère de la génomique, la science des génomes, qui a pour objet l’étude de l’ADN notamment, a soulevé de grands espoirs. Malheureusement, malgré les efforts et investissements des grands laboratoires pharmaceutiques, aucun nouveau traitement efficace n’émergera. À leur tour, les grands groupes pharmaceutiques désertent ce domaine de recherche… Les départs successifs des chercheurs académiciens et de l’industrie se traduiront par 30 années blanches en termes de développement thérapeutique.

Conséquence : aujourd’hui, la menace d’une impasse thérapeutique, dans laquelle les bactéries finiraient par résister à tous les antibiotiques connus, n’est plus une vue de l’esprit…

À la fin des années 2000, les principaux freins au développement de nouveaux antibiotiques sont bien identifiés : outre le fait que la mise au point de nouvelles molécules représente un défi scientifique compliqué, les exigences réglementaires, coûteuses, rebutent les investisseurs, et ce d’autant plus que le marché est défaillant.

Publications, rapports d’experts et journalistes exhortent à cette période les pouvoirs publics et les grandes institutions à inscrire la crise de la résistance aux antimicrobiens en haut de leurs agendas. À force de persuasion, le sujet finit enfin par s’imposer comme une préoccupation mondiale. En 2016, l’Assemblée des Nations-Unies, se penche sur la question de l’antibiorésistance. Une victoire, car c’est seulement la quatrième fois depuis sa création que cette organisation se consacre à un thème relevant de la santé !

Des discussions et propositions sont faites afin d’établir des exigences réglementaires éthiquement et scientifiquement plus adaptées. Des modèles pionniers de financement (suédois ou anglais) sont proposés pour dynamiser ce marché défaillant et attirer à nouveau les grandes compagnies dans la course à l’armement contre les bactéries.

Signe que la mesure du problème a été prise, en septembre 2021, le rapport des ministres de la Santé du G20 affirme clairement le besoin de continuer à innover dans le domaine. Si tout n’est pas réglé, de grandes avancées ont été obtenues cette dernière décennie pour pallier deux des freins majeurs de la lutte contre l’antibiorésistance. Mais si les freins administratifs et financiers se sont desserrés, les défis scientifiques restent encore à relever.

Comment mettre au point de nouveaux antimicrobiens ? Peut-être en explorant d’autres pistes que les antibiotiques stricto sensu…

Il existe des alternatives aux antibiotiques. Parmi les pistes explorées, citons par exemple la phagothérapie, qui consiste à utiliser un ennemi naturel des bactéries pour les tuer, en l’occurrence les phages, des virus qui les infectent. La vaccination, ou le recours à des anticorps monoclonaux, constituent d’autres approches possibles. Ces traitements permettent de cibler un pathogène en particulier, ce qui, contrairement aux antibiotiques à large spectre, limite l’impact sur le microbiote de l’hôte et le risque d’émergence d’une résistance généralisée.

Mais les antibiotiques eux-mêmes n’ont sans doute pas dit leur dernier mot.

En sondant des environnements encore non étudiés, où pourraient vivre des organismes produisant des molécules inédites, on peut espérer découvrir de nouvelles classes d’antibiotiques. La plupart des antibiotiques sont en effet issus de molécules naturellement produites par d’autres microorganismes. Or on estime qu’à peine 1 % des microorganismes sont cultivables en laboratoire… c’est dire qu’on les connaît mal, sinon pas !

Pour accéder à la partie immergée de cet iceberg microbien, les chercheurs disposent depuis quelques années de nouvelles technologies, comme la métagénomique, qui permet d’analyser l’ensemble des génomes des organismes vivant dans des environnements donnés, ou l’isolation chip (iChip, « puce d’isolement »), un dispositif qui permet d’isoler des bactéries grâce à des membranes perméables puis de les replacer dans le milieu dont elles proviennent – le sol par exemple, afin qu’elles continuent à pousser dans les conditions qui leur conviennent.

Une autre stratégie est de contourner les stratégies de résistances des bactéries pour les rendre à nouveau vulnérables à des antibiotiques actuellement dépassés. La première étape est de trouver ce qui, chez une bactérie, lui donne sa résistance ; la deuxième est de les contrer. L’informatique permet aujourd’hui de parcourir les bases de données regroupant les médicaments existants, à la recherche d’un composé visant les cibles identifiées chez les bactéries. Ce composé, administré en complément de l’antibiotique, permettra le succès de celui-ci. L’Augmentin®, constitué d’Amoxicilline et d’acide clavulanique, est un exemple du succès de cette approche.

Le repositionnement de médicament ou la réévaluation de composés dont le développement a été arrêté sont aussi explorés. De nombreux composés abandonnés pourraient en effet susciter un regain d’intérêt grâce à l’évolution des méthodes de synthèse, par exemple. La daptomycine est un bon exemple : découvert au début des années 1980 dans une bactérie du sol et abandonné pendant 20 ans, il n’a été commercialisé qu’au début des années 2000, comme antibiotique de dernier recours contre les infections au staphylocoque doré. Il est devenu l’antibiotique intraveineux le plus rentable aux États-Unis…

Enfin, une autre piste est d’administrer des composés qui empêcheront le caractère pathogène de la bactérie (autrement dit, sa virulence) de s’exprimer. On parle alors d’« antivirulents ». Plutôt que d’éliminer la bactérie qui risque de causer une infection, cette approche privilégie la restauration d’un équilibre microbiote-hôte afin de moduler sa pathogénicité. Étant donné que les antivirulents exercent une faible pression de sélection naturelle, on espère que l’apparition de résistance à leur encontre sera limitée. Les premiers traitements liés à cette stratégie sont aujourd’hui en phase d’essai clinique.

Notre équipe de recherche s’appuie sur ces stratégies pour tenter de mettre au point de nouvelles solutions thérapeutiques, et ainsi contribuer à la lutte contre l’antibiorésistance. Une priorité, car les conséquences de cette pandémie silencieuse se feront sentir sur toute la planète : en 2016, la Banque mondiale avertissait que d’ici à 2050, la résistance aux antimicrobiens pourrait faire basculer 28,3 millions de personnes supplémentaires dans l’extrême pauvreté et avoir sur le PIB mondial les mêmes effets que la crise de 2008, tandis que l’OMS estimait que sur la même période, elle pourrait entraîner 2,4 millions de morts rien que dans les pays à haut revenu.

Comment lutter contre la résistance aux antibiotiques

Comment lutter contre la résistance aux antibiotiques

Pariac
Maître de Conférences en Microbiologie, Université de Caen Normandie

Eliette Riboulet-Bisson
Maître de Conférences en Microbiologie, Université de Caen Normandie dans The conversation


S’il y a une chose que la pandémie de Covid-19 nous a apprise, c’est que les virus ne connaissent pas les frontières… Ni aucun microbe, d’ailleurs : avec plus de 30 millions de vols d’avion par an, soit plus de 80 000 par jour, les déplacements de l’être humain et le transport de marchandises sont autant de moyens de dissémination des bactéries, champignons, parasites et autres virus – y compris de ceux qui provoquent des maladies. Si soigner les infections virales n’est pas facile, car il n’existe pas de traitement universel, les choses sont différentes en ce qui concerne les bactéries. Nous disposons en effet, depuis les années 1940, de traitements accessibles et souvent efficaces contre la grande majorité d’entre elles : les antibiotiques, des substances d’origine naturelle, semi-synthétiques ou synthétiques. Malheureusement, aujourd’hui on craint que cette efficacité ne soit bientôt reléguée au rang de beau souvenir. En effet, l’utilisation excessive et non adaptée des antibiotiques, conjuguée aux formidables capacités évolutives des bactéries, a mené au développement de souches résistantes à ces médicaments. Plus grave, cette « antibiorésistance » se répand, car les bactéries sont capables de s’échanger les gènes qui leur permettent de se débarrasser des antibiotiques. Et ce, même quand elles appartiennent à des espèces différentes !

En 2002, les pouvoirs publics et la Caisse nationale d’assurance maladie tentaient de sensibiliser les Français à la gravité de la situation. Si le slogan martelé alors (« Les antibiotiques, c’est pas automatique ») est entré dans toutes les têtes, les choses ne se sont pas améliorées pour autant, bien au contraire. Au point qu’en 2018 le ministère de la Santé proposait un nouveau slogan : « Les antibiotiques sont précieux, utilisons-les mieux ». Aujourd’hui, l’Organisation mondiale de la santé elle-même tire la sonnette d’alarme, appelant les chercheurs du monde entier à engager des recherches pour améliorer les traitements existants et, surtout, en mettre au point de nouveaux.

Deux décennies après les premiers cris d’alarme, où en est-on vraiment ? Quelles sont les stratégies mises en place pour lutter contre l’antibiorésistance ?

En 1928, Alexander Flemming découvre par hasard la pénicilline. Mais ce n’est que dans les années 1940, par le travail d’Howard Walter Florey et Ernst Boris Chain, que sa production industrielle sera mise en place. Et changera le cours de l’histoire : Ces médicaments « miracles » ont ainsi ajouté en moyenne 20 ans à l’espérance de vie à travers le monde. Suivront 20 années de découvertes sensationnelles durant lesquelles la majorité des antibiotiques encore utilisés aujourd’hui sont découverts.

Le problème est que les bactéries s’adaptent et développent des mécanismes de résistance contre chaque nouvel antibiotique découvert et utilisé. Les antibiotiques agissent au niveau de divers composants de la cellule bactérienne : la membrane, l’ADN, etc. Malheureusement, il arrive que certaines bactéries acquièrent une résistance à ces molécules. Diverses mutations peuvent par exemple leur permettre d’acquérir la capacité de détruire un antibiotique donné, de le rejeter dans le milieu extérieur, ou encore modifier sa cible initiale pour le rendre inopérant.

Au fil des années, la multiplication de ces stratégies de défense a résulté en un nombre croissant de bactéries résistantes, voire multirésistantes à des traitements jusque-là efficaces – entraînant chaque jour plus de décès.

Dans un premier temps, le grand nombre de molécules découvertes a permis de pallier ce problème. Mais dans le courant des années 1970, les travaux académiques se sont peu à peu détournés de la recherche de nouveaux antibiotiques. Les chimistes travaillant pour l’industrie pharmaceutique continueront à produire de nouvelles générations d’antibiotiques, en modifiant des antibiotiques connus, afin de cibler les bactéries résistantes.

L’avènement de l’ère de la génomique, la science des génomes, qui a pour objet l’étude de l’ADN notamment, a soulevé de grands espoirs. Malheureusement, malgré les efforts et investissements des grands laboratoires pharmaceutiques, aucun nouveau traitement efficace n’émergera. À leur tour, les grands groupes pharmaceutiques désertent ce domaine de recherche… Les départs successifs des chercheurs académiciens et de l’industrie se traduiront par 30 années blanches en termes de développement thérapeutique.

Conséquence : aujourd’hui, la menace d’une impasse thérapeutique, dans laquelle les bactéries finiraient par résister à tous les antibiotiques connus, n’est plus une vue de l’esprit…

À la fin des années 2000, les principaux freins au développement de nouveaux antibiotiques sont bien identifiés : outre le fait que la mise au point de nouvelles molécules représente un défi scientifique compliqué, les exigences réglementaires, coûteuses, rebutent les investisseurs, et ce d’autant plus que le marché est défaillant.

Publications, rapports d’experts et journalistes exhortent à cette période les pouvoirs publics et les grandes institutions à inscrire la crise de la résistance aux antimicrobiens en haut de leurs agendas. À force de persuasion, le sujet finit enfin par s’imposer comme une préoccupation mondiale. En 2016, l’Assemblée des Nations-Unies, se penche sur la question de l’antibiorésistance. Une victoire, car c’est seulement la quatrième fois depuis sa création que cette organisation se consacre à un thème relevant de la santé !

Des discussions et propositions sont faites afin d’établir des exigences réglementaires éthiquement et scientifiquement plus adaptées. Des modèles pionniers de financement (suédois ou anglais) sont proposés pour dynamiser ce marché défaillant et attirer à nouveau les grandes compagnies dans la course à l’armement contre les bactéries.

Signe que la mesure du problème a été prise, en septembre 2021, le rapport des ministres de la Santé du G20 affirme clairement le besoin de continuer à innover dans le domaine. Si tout n’est pas réglé, de grandes avancées ont été obtenues cette dernière décennie pour pallier deux des freins majeurs de la lutte contre l’antibiorésistance. Mais si les freins administratifs et financiers se sont desserrés, les défis scientifiques restent encore à relever.

Comment mettre au point de nouveaux antimicrobiens ? Peut-être en explorant d’autres pistes que les antibiotiques stricto sensu…

Il existe des alternatives aux antibiotiques. Parmi les pistes explorées, citons par exemple la phagothérapie, qui consiste à utiliser un ennemi naturel des bactéries pour les tuer, en l’occurrence les phages, des virus qui les infectent. La vaccination, ou le recours à des anticorps monoclonaux, constituent d’autres approches possibles. Ces traitements permettent de cibler un pathogène en particulier, ce qui, contrairement aux antibiotiques à large spectre, limite l’impact sur le microbiote de l’hôte et le risque d’émergence d’une résistance généralisée.

Mais les antibiotiques eux-mêmes n’ont sans doute pas dit leur dernier mot.

En sondant des environnements encore non étudiés, où pourraient vivre des organismes produisant des molécules inédites, on peut espérer découvrir de nouvelles classes d’antibiotiques. La plupart des antibiotiques sont en effet issus de molécules naturellement produites par d’autres microorganismes. Or on estime qu’à peine 1 % des microorganismes sont cultivables en laboratoire… c’est dire qu’on les connaît mal, sinon pas !

Pour accéder à la partie immergée de cet iceberg microbien, les chercheurs disposent depuis quelques années de nouvelles technologies, comme la métagénomique, qui permet d’analyser l’ensemble des génomes des organismes vivant dans des environnements donnés, ou l’isolation chip (iChip, « puce d’isolement »), un dispositif qui permet d’isoler des bactéries grâce à des membranes perméables puis de les replacer dans le milieu dont elles proviennent – le sol par exemple, afin qu’elles continuent à pousser dans les conditions qui leur conviennent.

Une autre stratégie est de contourner les stratégies de résistances des bactéries pour les rendre à nouveau vulnérables à des antibiotiques actuellement dépassés. La première étape est de trouver ce qui, chez une bactérie, lui donne sa résistance ; la deuxième est de les contrer. L’informatique permet aujourd’hui de parcourir les bases de données regroupant les médicaments existants, à la recherche d’un composé visant les cibles identifiées chez les bactéries. Ce composé, administré en complément de l’antibiotique, permettra le succès de celui-ci. L’Augmentin®, constitué d’Amoxicilline et d’acide clavulanique, est un exemple du succès de cette approche.

Le repositionnement de médicament ou la réévaluation de composés dont le développement a été arrêté sont aussi explorés. De nombreux composés abandonnés pourraient en effet susciter un regain d’intérêt grâce à l’évolution des méthodes de synthèse, par exemple. La daptomycine est un bon exemple : découvert au début des années 1980 dans une bactérie du sol et abandonné pendant 20 ans, il n’a été commercialisé qu’au début des années 2000, comme antibiotique de dernier recours contre les infections au staphylocoque doré. Il est devenu l’antibiotique intraveineux le plus rentable aux États-Unis…

Enfin, une autre piste est d’administrer des composés qui empêcheront le caractère pathogène de la bactérie (autrement dit, sa virulence) de s’exprimer. On parle alors d’« antivirulents ». Plutôt que d’éliminer la bactérie qui risque de causer une infection, cette approche privilégie la restauration d’un équilibre microbiote-hôte afin de moduler sa pathogénicité. Étant donné que les antivirulents exercent une faible pression de sélection naturelle, on espère que l’apparition de résistance à leur encontre sera limitée. Les premiers traitements liés à cette stratégie sont aujourd’hui en phase d’essai clinique.

Notre équipe de recherche s’appuie sur ces stratégies pour tenter de mettre au point de nouvelles solutions thérapeutiques, et ainsi contribuer à la lutte contre l’antibiorésistance. Une priorité, car les conséquences de cette pandémie silencieuse se feront sentir sur toute la planète : en 2016, la Banque mondiale avertissait que d’ici à 2050, la résistance aux antimicrobiens pourrait faire basculer 28,3 millions de personnes supplémentaires dans l’extrême pauvreté et avoir sur le PIB mondial les mêmes effets que la crise de 2008, tandis que l’OMS estimait que sur la même période, elle pourrait entraîner 2,4 millions de morts rien que dans les pays à haut revenu.

Combattre la résistance aux antibiotiques

Combattre la résistance aux antibiotiques

par
Megan Keller
Ph.D. Candidate in Microbiology, Cornell University dans the Conversation

La résistance aux antibiotiques est un problème majeur : elle a contribué à près de 1,27 million de décès dans le monde en 2019. La tolérance aux antibiotiques, quant à elle, est un sujet de recherche plus récent. La tolérance aux antibiotiques se produit lorsqu’une bactérie survit longtemps après son exposition à des antibiotiques. Alors que les bactéries résistantes aux antibiotiques prospèrent même en présence d’un antibiotique, les bactéries tolérantes vivent plutôt dans un état de dormance – elles ne se développent pas, ni ne meurent, mais supportent l’antibiotique jusqu’à ce qu’elles puissent se « réveiller », une fois le stress disparu. La tolérance a été liée à la propagation de la résistance aux antibiotiques.

Je suis une microbiologiste. J’étudie la tolérance aux antibiotiques et je cherche à découvrir ce qui pousse les bactéries tolérantes à entrer dans cet état de dormance.

En comprenant pourquoi les bactéries ont la capacité de devenir tolérantes, les chercheurs espèrent développer des moyens d’éviter la propagation de cette capacité. Le mécanisme exact qui différencie la tolérance de la résistance n’est pas encore clair, mais une des pistes réside dans la façon dont les bactéries créent leur énergie – un processus négligé pendant des décennies.

De nombreux antibiotiques sont conçus pour percer les défenses extérieures de la bactérie comme un boulet de canon dans une forteresse de pierre. Les bactéries résistantes sont immunisées contre les boulets de canon, parce qu’elles peuvent soit le détruire avant qu’il n’endommage leur mur extérieur, soit modifier leurs propres murs pour pouvoir résister à l’impact.

De leur côté, les bactéries tolérantes peuvent supprimer entièrement leur mur et éviter tout dommage : pas de mur, pas de cible pour le boulet de canon. Si la menace disparaît rapidement, la bactérie peut reconstruire son mur pour se protéger d’autres dangers environnementaux et reprendre ses fonctions normales. Cependant, on ne sait toujours pas comment les bactéries savent que la menace antibiotique a disparu ni ce qui déclenche exactement leur réveil.

Avec mes collègues du laboratoire Dörr de l’université Cornell, nous essayons de comprendre les processus d’activation et de réveil de la bactérie tolérante responsable du choléra, Vibrio cholerae.

En effet, les médecins sont inquiets car la bactérie Vibrio cholerae est en train de développer rapidement une résistance à divers types d’antibiotiques. Ainsi, en 2010, Vibrio cholerae était déjà résistante à 36 antibiotiques différents, et on s’attend à ce que ce nombre augmente encore.

Pour étudier comment Vibrio cholerae développe une résistance, nous avons choisi une souche tolérante à une classe d’antibiotiques appelés bêta-lactames ou bêta-lactamines. Les bêta-lactamines sont le boulet de canon envoyé pour détruire la forteresse de la bactérie, et Vibrio cholerae s’adapte en activant deux gènes qui suppriment temporairement sa paroi cellulaire – un phénomène que j’ai pu observer au microscope. Après avoir supprimé sa paroi cellulaire, la bactérie active d’autres gènes, qui la transforment en « globules », fragiles mais capables de survivre aux effets de l’antibiotique. Une fois l’antibiotique éliminé ou dégradé, Vibrio cholerae reprend sa forme normale de bâtonnet et continue à se développer.

Les Vibrio cholerae normalement en forme de bâtonnet enlèvent leurs parois cellulaires et se transforment en globules en présence de pénicilline, ce qui leur permet de survivre plus longtemps.

Chez l’homme, ce processus de tolérance est observé lorsqu’un médecin prescrit un antibiotique, généralement la doxycycline, à un patient infecté par le choléra. L’antibiotique semble temporairement arrêter l’infection. Mais les symptômes réapparaissent ensuite, car les antibiotiques n’ont jamais complètement éliminé les bactéries.

La capacité de revenir à la normale et de se développer après la disparition de l’antibiotique est la clé de la survie des bactéries tolérantes.

Exposer Vibrio cholerae à un antibiotique pendant une période suffisamment longue finirait par le tuer. Mais un traitement antibiotique standard n’est souvent pas assez long pour se débarrasser de toutes les bactéries, même dans un état fragile. De plus, la prise d’un médicament pendant une période prolongée peut nuire aux bactéries et aux cellules saines, ce qui peut provoquer une aggravation de l’inconfort et de la maladie. En outre, le mauvais usage et l’exposition prolongée aux antibiotiques peuvent augmenter les risques de résistance des autres bactéries présentes dans l’organisme.

La bactérie Vibrio cholerae n’est pas la seule espèce à faire preuve de tolérance à des antibiotiques, et les chercheurs ont récemment identifié de nombreuses bactéries infectieuses qui ont développé une tolérance. Une famille de bactéries appelée entérobactéries, qui comprend les principaux agents pathogènes des maladies d’origine alimentaire Salmonella, Shigella et E. coli, n’est qu’une partie des nombreux types de bactéries capables de tolérer les antibiotiques.

Comme chaque bactérie est unique, la façon dont elle développe la tolérance semble l’être également. Certaines bactéries, comme Vibrio cholerae, effacent leurs parois cellulaires. D’autres peuvent modifier leurs sources d’énergie, augmenter leur capacité à se déplacer ou simplement évacuer l’antibiotique.

J’ai récemment découvert que le métabolisme d’une bactérie, c’est-à-dire la façon dont elle décompose sa « nourriture » pour produire de l’énergie, peut jouer un rôle important dans sa capacité à devenir tolérante aux antibiotiques. En effet, les différentes structures d’une bactérie, y compris sa paroi extérieure, sont constituées d’éléments spécifiques tels que des protéines. En empêchant la bactérie de fabriquer ces éléments, on affaiblit sa paroi, ce qui la rend plus susceptible d’être endommagée par l’environnement extérieur avant qu’elle ne puisse l’abattre.

Bien que de nombreuses recherches aient été menées sur la manière dont les bactéries développent des tolérances aux antibiotiques, il reste une pièce essentielle du puzzle à explorer : la manière dont la tolérance conduit à la résistance.

En 2016, des chercheurs ont découvert comment rendre les bactéries tolérantes en laboratoire. Après une exposition répétée à différents antibiotiques, des cellules d’E. coli ont pu s’adapter et survivre. L’ADN, le matériel génétique contenant les instructions pour le fonctionnement des cellules, est une molécule fragile. Lorsque l’ADN est rapidement endommagé par un stress – par exemple l’exposition à un antibiotique, les mécanismes de réparation de la cellule ont tendance à se dérégler et à provoquer des mutations susceptibles de créer une résistance et une tolérance.

Comme E. coli est similaire à de nombreux types de bactéries, les résultats de ces chercheurs montrent ironiquement que presque toutes les bactéries peuvent développer une tolérance… si elles sont poussées à leurs limites par les antibiotiques censés les tuer.

Une autre découverte récente très importante est que plus les bactéries restent longtemps tolérantes aux antibiotiques, plus elles sont susceptibles de développer des mutations menant à la résistance. En effet, la tolérance permet aux bactéries de développer une mutation de résistance qui réduit leurs chances d’être tuées lors d’un traitement antibiotique.

Ce phénomène est particulièrement important pour les communautés bactériennes qui sont souvent observées dans les biofilms qui ont tendance à recouvrir les surfaces souvent touchées dans les hôpitaux. Ces biofilms sont des couches gluantes de bactéries qui suintent une gelée protectrice qui rend difficile le traitement antibiotique et facilite le partage de l’ADN entre les microbes. Ainsi, ils peuvent faciliter le développement d’une résistance aux antibiotiques. On pense que ces conditions sont en fait similaires à ce qui pourrait se produire lors d’infections traitées aux antibiotiques, dans lesquelles de nombreuses bactéries vivent les unes à côté des autres et partagent leur ADN.

Les chercheurs appellent à une intensification des recherches sur la tolérance aux antibiotiques dans l’espoir qu’elles débouchent sur des traitements plus robustes, tant pour les maladies infectieuses que pour les cancers. Et il y a des raisons d’espérer. Une étude sur des souris a montré que la diminution de la tolérance aux antibiotiques réduit également la résistance.

Entre-temps, chacun peut prendre des mesures pour contribuer à la lutte contre la tolérance et la résistance aux antibiotiques : en prenant un antibiotique exactement comme il a été prescrit par le médecin, et en terminant tout le flacon. Une exposition brève et irrégulière à un médicament incite les bactéries à devenir tolérantes et finalement résistantes. Une utilisation plus rigoureuse des antibiotiques par l’ensemble de la population contribuerait à stopper l’évolution des bactéries tolérantes aux antibiotiques.

Interdiction en France de l’importation de viande avec antibiotiques de croissance

Interdiction en France de l’importation de viande avec antibiotiques de croissance

 

 

 

Une interdiction d’importation en France des viandes avec antibiotiques de croissance prise par arrêté. Le seul problème,  c’est que cette décision concerne pour l’instant uniquement le marché français et non l’union européenne. Du coup,  la portée d’une telle orientation risque d’être relative car la viande transite souvent par plusieurs pays est à l’origine elle vient parfois de pays très éloigné de l’Europe.«. La pratique est mise en cause pour son concours à l’émergence de microbes résistants aux antibiotiques utilisés pour soigner des infections humaines ou animales.

L’interdiction d’importer ces produits était attendue à l’échelle européenne fin janvier 2022 au plus tard. «Je pense qu’il faut aller vite sur ces sujets. Cette échéance étant passée, je prends une mesure au niveau national», soutient le ministre qui milite pour imposer aux produits agricoles importés les mêmes normes sanitaires et environnementales qu’en Europe. Cependant Bruno Dufayet, qui préside aussi la commission Enjeux sociétaux de l’interprofession de la viande Interbev. Interbev estime toutefois que cette mesure «ne sera efficace à 100% que si elle s’applique à l’ensemble du marché européen».

CETA : Mercosur : Poulet, bœuf aux hormones, farines animales, antibiotiques et autres cocktails chimiques

CETA : Mercosur : Poulet, bœuf aux hormones, farines animales, antibiotiques et autres cocktails chimiques

Inutile de tourner autour du pot,  l’agriculture est une  variable d’ajustement pour faciliter les échanges sur d’autres produits. Par exemple la vente des multinationales de  matériels aéronautiques, de services, du BTP, de télécoms etc.  Déjà  40% du poulet non conforme aux critères d’hygiène européens entrent déjà en France. Avec le Mercosur (Brésil, Argentine, Paraguay et Uruguay), ce serait 3 millions de poulets supplémentaires par an dans l’Hexagone. « On ne peut pas tolérer de la part de l’UE que les quotas augmentent et que les standards de qualité baissent », s’insurge Paul Lopez. Même chose pour le bœuf. L’équivalent de 14,4 milliards d’euros s’est déversé dans les assiettes des Français sous forme de viandes, produits laitiers transformés, poissons, crevettes, café, thé, et surtout fruits et légumes. Leur hausse globale, de 5% par rapport à l’année précédente, a fait basculer dans le rouge la balance commerciale française. Et progresser d’autant les risques sanitaires. En plus du traité Mercosur il y a le traité avec le Canada : le CETA.  À juste titre,  les éleveurs notamment bovins réclament  une renégociation du CETA au  motif que cela fait peser une menace sans précédent sur la filière. Il faut rappeler que le CETA  a été négocié dans la plus grande discrétion par l’union européenne voire dans la plus grande opacité ; aucune  étude d’impact sérieuse n’a été réalisée. Ce CETA  est par ailleurs un curieux objet juridique puisqu’il va entrer en vigueur le 1er mars sans avoir été formellement approuvé par les Etats. Une sorte de mise en application provisoire qui va durer longtemps ! Pourtant le CETA  va favoriser l’importation massive d’animaux  shootés aux OGM, aux protéines suspectes et aux hormones de croissance sans parler de l’avantage de compétitivité liée au dimensionnement de l’appareil de production au Canada. Aurélie Trouvé, agroéconomiste à AgroParisTech, a souligné dans uen étude « les potentielles menaces sur la viande bovine et porcine, liées au différentiel de compétitivité. » « Les échanges entre l’UE et le Canada sont excédentaires pour l’UE, mais ils sont essentiellement tirés par les boissons. En revanche, le déficit se creuse pour les oléagineux (grâce au soja et au canola canadiens), et les céréales. » Et le Ceta devrait contribuer à l’accentuer. Les droits de douane ne seront pas totalement supprimés pour les viandes, mais la contrepartie pourrait s’avérer tout aussi dangereuse, avec des contingents à droit nul relativement importants.  Aurélie Trouvé souligne également d’autres risques, plus insidieux, à savoir les barrières non tarifaires, les mécanismes de règlement des différends via les tribunaux arbitraux, et l’organe de régulation des réglementations (dont l’objectif est de supprimer toute entrave au commerce, en procédant à une reconnaissance respective des normes de part et d’autre de l’Atlantique, par exemple). Les normes potentiellement visées par le gouvernement et les industriels canadiens (et qui font l’objet de plaintes à l’OMC) sont la ractopamine (en porcin), l’hormone de croissance (en bovin), les OGM… Mais aussi potentiellement la politique agricole européenne. « Les subventions agricoles dans l’UE sont beaucoup plus importantes qu’au Canada. Or, il est possible de les discuter si l’une de parties considère que cela lui porte préjudice. Et il y a un effet « cliquet » : une fois que les barrières, les normes ou qu’un instrument de régulation tombent, il est impossible de revenir en arrière. » Les défenseurs d’un retour à une régulation en élevage devraient donc s’interroger sur leur soutien au Ceta. Car les deux choses sont incompatibles, selon la chercheuse. Baptiste Buczinski, de l’Institut de l’élevage, a insisté sur le différentiel de compétitivité. « Le maillon de l’engraissement canadien est plus compétitif, grâce à leurs élevages en feedlot. Mais le maillon le plus compétitif, c’est l’abattage car 4-5 gros abattoirs se répartissent le secteur, dont les numéros un et deux mondiaux, JBS et Cargill, qui traitent chacun plus de 4 millions de tonnes. » Un différentiel de concurrence existe aussi sur la réglementation : protéines animales autorisées dans l’alimentation, pas de contraintes relatives au bien-être, une traçabilité avec quelques « failles »…. Dans le porc, l’étude arrive aux mêmes conclusions, pour les mêmes raisons.

 

Du poulet McDo avec moins d’antibiotiques

Du poulet McDo avec moins d’antibiotiques

Il est clair qu’après avoir mangé un sandwich au poulet chez McDo il n’est pas utile de passer chez le pharmacien pour acheter sa dose d’antibiotiques. Ceci étant,  cette accoutumance aux antibiotiques rend les traitements médicaux de moins en moins efficaces. McDo prévoit donc de remplacer par un peu plus de ketchup la dose d’antibiotiques. On pourrait aussi conseiller à McDo de limiter et même de supprimer le cocktail de produits chimiques, alimentaires et médicamenteux infligés aux poulets par l’élevage industriel. Après avoir déjà pris des mesures semblables aux États-Unis, la chaîne de restauration rapide américaine McDonald’s compte « réduire » au cours des prochaines années le traitement aux antibiotiques des poulets qu’elle sert à travers le monde. « À partir de 2018, nous allons commencer à mettre en œuvre une nouvelle politique sur l’usage d’antibiotiques chez les poulets d’élevage sur l’ensemble des marchés mondiaux », a annoncé le groupe dans un communiqué.  Depuis l’an dernier, McDonald’s ne sert déjà plus de poulet élevé aux antibiotiques dans ses restaurants américains. Mais si le groupe annonce maintenant un plan à l’échelle mondiale, il est moins ambitieux qu’outre-Atlantique puisqu’il ne concerne que les antibiotiques à l’importance jugée la plus cruciale par l’Organisation mondiale de la santé (OMS) pour la médecine humaine. L’élevage intensif des volailles et l’augmentation du nombre de maladies a poussé les éleveurs à utiliser un nombre croissant d’antibiotiques pour éviter que des germes par contamination ne détruisent les élevages. Cet usage intensif a créé chez les volailles des germes qui présentent une antibiorésistance. En conséquence, ONG et organisations de santé estiment que l’utilisation d’antibiotiques, qui permet aussi à la viande de grossir plus vite, diminue l’effet des médicaments sur les consommateurs quand ils ont besoin d’en prendre.





L'actu écologique |
bessay |
Mr. Sandro's Blog |
Unblog.fr | Annuaire | Signaler un abus | astucesquotidiennes
| MIEUX-ETRE
| louis crusol