Hydrogène : quel avenir ?

Hydrogène : quel avenir ?

 Il est bien difficile de trouver des articles un peu objectifs sur les potentialités des différentes énergies qualifiées de nouvelles. En effet, la plupart du temps la littérature sur chaque source d’énergie est surtout le fait de lobbies qui vantent  les mérites des intérêts qu’ils représentent, c’est le cas du nucléaire évidemment mais tout autant par exemple du lobby du solaire, de l’éolienne ou encore de l’hydrogène. Un article intéressant émanant du blog cavainc.blogspot.com  essaye de faire le point sur le sujet, il évoque les potentialités mais souligne aussi toutes les difficultés qui restent à résoudre en matière de production, aujourd’hui encore trop polluantes et/ou  trop peu compétitives, aussi en matière de transport,  de stockage et ‘utilisation notamment les risques d’explosion.

 

« L’hydrogène apporte à l’électricité la souplesse d’utilisation qui lui fait défaut. En effet, si l’on sait produire de l’électricité de multiples façons, on ne sait pas la stocker efficacement. Les batteries sont coûteuses et n’offrent qu’une autonomie très limitée. L’hydrogène, lui, peut être stocké. Ainsi, avec une réserve d’hydrogène et une pile à combustible, il devient possible de produire de l’électricité n’importe où et n’importe quand, sans être relié au réseau électrique. Grâce à l’hydrogène et à la pile à combustible, électricité et mobilité deviennent plus aisément compatibles.

Petit historique de l’hydrogène

C’est en 1766 que le chimiste britannique Henry Cavendish parvint à isoler une nouvelle substance gazeuse qui brûlait dans l’air, et qu’il appela pour cela “air inflammable”. Pour arriver à ses fins, il recueillit avec beaucoup de soins, dans des vessies de porc, le gaz produit par l’action de l’acide chlorhydrique sur le fer, le zinc, l’étain, et découvrit qu’au moment où le gaz s’échappait de la vessie il brûlait avec une même flamme bleue pour chacun des échantillons dès qu’on l’allumait.

L’hydrogène doit son nom au chimiste français Antoine-Laurent de Lavoisier, qui effectua peu de temps après en 1781 la synthèse de l’eau. En 1804 le Français Louis-Joseph Gay-Lussac et l’Allemand Alexander von Humboldt démontrèrent conjointement que l’eau est composée d’un volume d’oxygène pour deux volumes d’hydrogène, et c’est en 1839 que l’Anglais William R. Grove découvrît le principe de la pile à combustible : il s’agit d’une réaction chimique entre l’hydrogène et l’oxygène avec production simultanée d’électricité, de chaleur et d’eau.

Dans les années 1939-1953 l’Anglais Francis T. Bacon fît progresser les générateurs chimiques d’électricité, qui permirent la réalisation du premier prototype industriel de puissance, et à partir de 1960 la NASA utilisa la pile à combustible pour alimenter en électricité ses véhicules spatiaux (programmes Apollo et Gemini).

 

Une petite molécule pleine d’énergie

La molécule d’hydrogène que nous utilisons le plus couramment est composée de deux atomes d’hydrogène (H2). Incolore, inodore, non corrosive, cette molécule a l’avantage d’être particulièrement énergétique : la combustion de 1 kg d’hydrogène libère environ 3 fois plus d’énergie qu’1 kg d’essence (soit 120 MJ/kg contre 45 MJ/kg pour l’essence). En revanche, comme l’hydrogène est le plus léger des éléments, il occupe, à poids égal, beaucoup plus de volume qu’un autre gaz. Ainsi, pour produire autant d’énergie qu’avec 1 litre d’essence, il faut 4,6 litres d’hydrogène comprimé à 700 bars. Ces volumes importants sont une contrainte pour le transport et le stockage sous forme gazeuse.

Comme de nombreux combustibles, l’hydrogène peut s’enflammer ou exploser au contact de l’air. Il doit donc être utilisé avec précaution. Mais la petitesse de ses molécules lui permet de diffuser très rapidement dans l’air (quatre fois plus vite que le gaz naturel), ce qui est un facteur positif pour la sécurité.

 

Une technologie d’avenir déjà ancienne

Le développement de la filière hydrogène repose en grande partie sur la technologie de la pile à combustible (PAC). Son principe n’est pas nouveau mais, s’il paraît simple, sa mise en œuvre est complexe et coûteuse, ce qui a interdit sa diffusion dans le grand public pendant longtemps. Aujourd’hui, des progrès ont été réalisés et les applications envisageables sont nombreuses.

Les enjeux sont immenses, notamment dans le cas des transports, aujourd’hui exclusivement dépendants des énergies fossiles non renouvelables et très polluantes. Des véhicules électriques alimentés par une pile à combustible fonctionnant à l’hydrogène pourront remplacer avantageusement nos véhicules actuels : de nos voitures ne s’échappera plus que de l’eau ! Les constructeurs automobiles ont déployé depuis 2008 les premières applications de l’hydrogène dans les “flottes captives” : bus et véhicules utilitaires ont en effet un point de passage ou de stationnement obligé, ce qui facilite le ravitaillement. Les premières voitures particulières pourraient, quant à elles, commencer à pénétrer le marché entre 2010 et 2020.

Déjà, la micro-PAC produit les quelques watts nécessaires à l’alimentation d’appareils portables (téléphones, ordinateurs…), en multipliant par 5 leur autonomie par rapport aux systèmes actuels et permettant une recharge en un instant et n’importe où.

Les applications stationnaires d’une PAC capable de produire par exemple 1 MW sont également intéressantes. Elles pourraient être commercialisées à l’horizon 2010. Dans les habitations, l’hydrogène sera ainsi tout à la fois source de chaleur et d’électricité. Il permettra, de plus, d’alimenter en électricité les relais isolés qui ne peuvent être raccordés au réseau (sites montagneux, mer…).

Sur ce terrain, il peut devenir le parfait complément des énergies renouvelables. En effet, les énergies solaire ou éolienne ont l’inconvénient d’être intermittentes. Grâce à l’hydrogène, il devient possible de gérer ces aléas : en cas de surproduction, l’électricité excédentaire peut servir à produire de l’hydrogène ; lorsque la production est insuffisante, l’hydrogène peut à son tour être converti en électricité.

Les potentialités de ce gaz ne se limitent pas à la production d’électricité. Il peut également fournir de l’énergie par combustion. C’est déjà le cas dans le domaine spatial, où il sert à la propulsion des fusées. Il pourrait entrer également dans la composition de gaz de synthèse, ce qui permettrait d’obtenir des carburants plus énergétiques que les carburants actuels.

 

Présent partout… mais disponible nulle part

L’hydrogène est extrêmement abondant sur notre planète. Chaque molécule d’eau (H2O) en contient deux atomes. Or, l’eau couvre 70 % du globe terrestre. On trouve également de l’hydrogène dans les hydrocarbures qui sont issus de la combinaison d’atomes de carbone et d’hydrogène. De même la biomasse (organismes vivants, animaux ou végétaux) est donc une autre source potentielle d’hydrogène.

Mais bien qu’il soit l’élément le plus abondant de la planète, l’hydrogène n’existe pratiquement pas dans la nature à l’état pur. Il pourrait donc être converti en énergie de façon inépuisable… à condition de savoir le produire en quantité suffisante.

Il a heureusement l’avantage de pouvoir être produit à partir des trois grandes sources : fossile, nucléaire, biomasse. Mais pour être économiquement et écologiquement viable, sa production doit répondre à trois critères :

- la compétitivité : les coûts de production ne doivent pas être trop élevés

- le rendement énergétique : la production ne doit pas nécessiter trop d’énergie

- la propreté : le processus de fabrication doit être non polluant sous peine d’annuler l’un des principaux atouts de l’hydrogène.

Plusieurs méthodes sont aujourd’hui opérationnelles, mais aucune ne répond pour l’instant parfaitement à ces trois critères. Les coûts de production restent notamment très élevés, ce qui est un obstacle pour des utilisations massives. De nouvelles voies prometteuses sont en cours d’élaboration.

 

La production actuelle

Si l’hydrogène n’est quasiment pas utilisé dans le domaine de l’énergie, il est une des matières de base de l’industrie chimique et pétrochimique. Il est utilisé notamment pour la production d’ammoniac et de méthanol, pour le raffinage du pétrole ; il est également employé dans les secteurs de la métallurgie, de l’électronique, de la pharmacologie ainsi que dans le traitement de produits alimentaires. Pour couvrir ces besoins, 50 millions de tonnes d’hydrogène sont déjà produits chaque année. Mais si ces 50 millions de tonnes devaient servir à la production d’énergie, elles ne représenteraient que 1,5 % des besoins mondiaux d’énergie primaire. Utiliser l’hydrogène comme vecteur énergétique suppose donc d’augmenter énormément sa production.

0 Réponses à “Hydrogène : quel avenir ?”


  • Aucun commentaire

Laisser un Commentaire




L'actu écologique |
bessay |
Mr. Sandro's Blog |
Unblog.fr | Créer un blog | Annuaire | Signaler un abus | astucesquotidiennes
| MIEUX-ETRE
| louis crusol